adt-bundle-windows的system-images系统镜像,版本是21
2022-05-07 15:35:10 178.49MB system-image adt
1
This exploratory paper quests for a stochastic and context sensitive grammar of images. The grammar should achieve the following four objectives and thus serves as a unified framework of representation, learning, and recognition for a large number of object categories. (i) The grammar represents both the hierarchical decompositions from scenes, to objects, parts, primitives and pixels by terminal and non-terminal nodes and the contexts for spatial and functional relations by horizontal links between the nodes. It formulates each object category as the set of all possible valid configurations produced by the grammar. (ii) The grammar is embodied in a simple And–Or graph representation where each Or-node points to alternative sub-configurations and an And-node is decomposed into a number of components. This representation supports recursive top-down/bottom-up procedures for image parsing under the Bayesian framework and make it convenient to scale up in complexity. Given an input image, the image parsing task constructs a most probable parse graph on-the-fly as the output interpretation and this parse graph is a subgraph of the And–Or graph after * Song-Chun Zhu is also affiliated with the Lotus Hill Research Institute, China. making choice on the Or-nodes. (iii) A probabilistic model is defined on this And–Or graph representation to account for the natural occurrence frequency of objects and parts as well as their relations. This model is learned from a relatively small training set per category and then sampled to synthesize a large number of configurations to cover novel object instances in the test set. This generalization capability is mostly missing in discriminative machine learning methods and can largely improve recognition performance in experiments. (iv) To fill the well-known semantic gap between symbols and raw signals, the grammar includes a series of visual dictionaries and organizes them through graph composition. At the bottom-level the dictionary is a set of image primitives each having a number of anchor points with open bonds to link with other primitives. These primitives can be combined to form larger and larger graph structures for parts and objects. The ambiguities in inferring local primitives shall be resolved through top-down computation using larger structures. Finally these primitives forms a primal sketch representation which will generate the input image with every pixels explained. The proposal grammar integrates three prominent representations in the literature: stochastic grammars for composition, Markov (or graphical) models for contexts, and sparse coding with primitives (wavelets). It also combines the structure-based and appearance based methods in the vision literature. Finally the paper presents three case studies to illustrate the proposed grammar.
2022-05-06 16:13:24 7.92MB image processing image grammar
1
html5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-imageshtml5-3d-mult-axis-images
2022-05-06 14:08:21 804KB 3d html5 源码软件 前端
数据集为坑洼和平原路图片,可用于坑洼检测,图像分类。这些图像是从google图像搜索结果中下载的,并使用“ google图像下载”库进行了抓取。 Pothole and Plain Road Images_datasets.txt Pothole and Plain Road Images_datasets.zip
2022-05-02 15:28:14 240.75MB 数据集
1
office数据集
2022-04-27 11:40:26 48.83MB office数据集
1
PIPKit适用于iOS的画中画(iPhone,iPad)要求iOS 8.0+ Swift 5.0 Xcode 11安装CocoaPods PIPKit可通过CocoaPods获得。 要安装它,只需针对iOS的PIPKit画中画(iPhone,iPad)要求iOS 8.0+ Swift 5.0 Xcode 11安装CocoaPods PIPKit可通过CocoaPods获得。 要安装它,只需将以下行添加到Podfile中:pod'PIPKit'Carthage对于带有Carthage的iOS 8+项目github“ Kofktu / PIPKit”用法PIPUsable公共协议PIPUsable {var initialState:PIPState {get} var initialPosition:PIPPosition {get } var pipEdgeInsets:UIEdgeInsets {get}
2022-04-26 10:18:48 1.92MB Swift Images
1
用卷积滤波器matlab代码图像过滤和混合图像 一般说明 该存储库提供了一个图像卷积函数(图像过滤),用于创建混合图像。 该技术由Oliva,Torralba和Schyns于2006年发明,并在SIGGRAPH的论文中发表。 高频图像内容倾向于主导感知,但是在远处,只有低频(平滑)内容被感知。 通过混合高频和低频内容,我们可以创建一个混合图像,该图像在不同距离处的感知方式有所不同。 该项目在计算机视觉课程中。 资料夹说明 1- matlab脚本是包含以下内容的文件夹: my_imfilter =通过卷积进行过滤的函数。 proj1_test_filtering =使用相同过滤器的测试用例。 gen_hybrid_image =混合图像的书面功能。 vis_hybrid_image =用于以不同比例显示混合图像输出的功能。 Proj1 =输出混合图像(低频或高频,混合图像和不同比例)的脚本。 2-随项目附带的图像位于名为raw_data的文件夹中 3-输出文件夹包含以下内容 狗照片输入到proj1_test_filtering代码时的输出。 混合照片的输出。 算法 1.通过卷积过滤 获取
2022-04-20 21:11:51 3.28MB 系统开源
1
该数据集是2020年5月r / aww subreddit的热门帖子的集合421。此处仅包含图像的帖子。 大多数图像是宠物的,但也有人物图像以及其他形式的健康。 aww_dataset.csv Wholesome Images_datasets.txt Wholesome Images_images_datasets.rar
2022-04-20 11:15:51 209.47MB 数据集
1
matlab图像分割肿瘤代码美国图像中的脑肿瘤分割 该代码是在我的论文项目范围内,在我的帝国理工学院计算机(软件工程)理学硕士课程的最后一个学期开发的。 项目描述:包含在 安装 在本地克隆此存储库。 最好使用python虚拟环境来安装所有必需的软件包。 为避免出现任何问题,请通过运行来更新pip pip install --upgrade pip 通过运行安装所有必需的软件包 pip install -r requirements.txt 用法 RAS网络 要训​​练RAS网络模型,请在RAS / train.py文件夹中指定训练数据集路径并运行 python3 train.py 要测试RAS模型,请在RAS / test.py文件夹中指定测试数据集路径并运行 python3 test.py CPD网络 要训​​练CPD模型,请在CPD / train.py文件夹中指定训练数据集路径(image_root,gt_root)并运行 python3 train.py 要测试CPD模型,请在CPD / test.py文件夹中指定dataset_path并运行 python3 test.py
2022-04-15 21:18:44 2.84MB 系统开源
1