基于 pytorch-transformers 实现的 BERT 中文文本分类代码 数据: 从 THUCNews 中随机抽取20万条新闻标题,一共有10个类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐,每类2万条标题数据。数据集按如下划分: 训练集:18万条新闻标题,每个类别的标题数为18000 验证集:1万条新闻标题,每个类别的标题数为1000 测试集:1万条新闻标题,每个类别的标题数为1000
2024-05-09 10:42:25 732.57MB pytorch bert 文档资料 人工智能
1
今天小编就为大家分享一篇Pytorch 神经网络—自定义数据集上实现教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-05-08 19:56:58 67KB Pytorch 神经网络 数据集
1
python编写的简单程序,一共只有130多行,但是应付老师绰绰有余:) 实验:基于LSTM的命名实体识别 数据处理 给每个实体类型进行编号、给每个单词进行编号 文本填充 使用标识符,将所有序列处理成同样长度 训练流程 给每个输入和其对应编号建立一个张量 构成训练批 输入LSTM单元 输入全连接层 使用sorftmax或其他分类器进行预测 模型构建 pytorch自带LSTM类/其他工具也可以/自己编码也可以
2024-05-08 15:06:16 1.85MB 自然语言处理 pytorch pytorch 课程资源
1
源程序+ 数据集+ 实验报告 问题描述: 理解序列数据处理方法,补全面向对象编程中的缺失代码,并使用torch自带数据工具将数据封装为dataloader 分别采用手动方式以及调用接口方式实现RNN、LSTM和GRU,并在至少一种数据集上进行实验 从训练时间、预测精度、Loss变化等角度对比分析RNN、LSTM和GRU在相同数据集上的实验结果(最好使用图表展示) 不同超参数的对比分析(包括hidden_size、batch_size、lr等)选其中至少1-2个进行分析 ps:用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分
2024-05-08 11:05:31 18.51MB 深度学习 pytorch python
1
基于pytorch的LSTM时间序列预测的研究(交通流量预测)
2024-05-03 10:27:12 5.04MB pytorch pytorch lstm
1
柠檬汽水 用于电子病历(EHR)数据的开源深度学习库。 在此库的初始发行版中.. 它基于流行论文实现了2种深度学习模型(LSTM和CNN) 使用合成的EHR数据,该数据是使用开源的 预测最重要的4种 最终目标是 继续添加更多的模型实现 不断添加其他公开可用的数据集 并设有排行榜,以跟踪哪些模型和配置在这些数据集上最有效 安装 可安装的lib即将推出 如何使用 现在,git克隆仓库并运行笔记本.. 仔细阅读以下Quick Start guides以了解基本信息 Quick Walkthrough Running Experiments 设置合成器并生成您喜欢的数据集 进行实验 路线图 排行榜,用于跟踪哪些模型和配置在不同的公开可用数据集上效果最佳。 回调,混合精度等 升级库以使用fastai v2。 或者至少,为fastai风格的回调和构建功能。 更多型号 从中挑选一些最佳的EHR模型并加
2024-04-27 21:47:39 4.05MB deep-learning pytorch healthcare fhir
1
1. 线性回归数据集 2. 基于Pytorch实现线性回归/单层神经网络模型
2024-04-25 11:12:28 77KB pytorch pytorch 线性回归 神经网络
1
闪电战-火炬动物园中的贝叶斯层 BLiTZ是一个简单且可扩展的库,用于在PyTorch上创建贝叶斯神经网络层(基于“)。 通过使用BLiTZ图层和utils,您可以以不影响图层之间的交互的简单方式(例如,就像使用标准PyTorch一样)添加非证书并收集模型的复杂性成本。 通过使用我们的核心权重采样器类,您可以扩展和改进此库,从而以与PyTorch良好集成的方式为更大范围的图层添加不确定性。 也欢迎拉取请求。 我们的目标是使人们能够通过专注于他们的想法而不是硬编码部分来应用贝叶斯深度学习。 Rodamap: 为不同于正态的后验分布启用重新参数化。 指数 贝叶斯层的目的 贝叶斯层上的权重采样 有可能优化我们的可训练重量 的确,存在复杂度成本函数随其变量可微分的情况。 在第n个样本处获得整个成本函数 一些笔记和总结 引用 参考 安装 要安装BLiTZ,可以使用pip命令: pip
2024-04-24 16:41:44 136KB pytorch pytorch-tutorial pytorch-implementation
1
有条件的U网火炬 有条件的U-Net的非官方pytorch实现 消息 此模型的已发布。 安装 conda install pytorch>=1.6 cudatoolkit=10.2 -c pytorch conda install -c conda-forge ffmpeg librosa conda install -c anaconda jupyter pip install musdb museval pytorch_lightning effortless_config tensorboard wandb pydub pip install https://github.com/PytorchLightning/pytorch-lightning/archive/0.9.0rc12.zip --upgrade 评价结果 姓名 control_input_dim control_n
2024-04-23 19:08:24 25KB Python
1
今天小编就为大家分享一篇PyTorch实现AlexNet示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-04-22 22:29:27 47KB PyTorch AlexNet
1