本书深入讲解如何使用PyTorch构建生产级计算机视觉模型,涵盖图像分类、目标检测、图像分割、姿态估计与异常检测等核心任务。通过项目驱动的方式,结合工业级实践技巧,帮助读者掌握从数据预处理到模型部署的全流程。书中还介绍基于图像的搜索推荐系统与可解释AI技术,融合前沿方法与实用代码,适合希望将理论转化为实际应用的开发者与研究人员。配套代码与数据开放获取,助力快速上手与二次开发。 本书《PyTorch计算机视觉实战》是三位作者——阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马倾力编写的计算机视觉领域的实战教程。本书深入探讨了如何运用PyTorch这一强大的深度学习框架,构建和部署生产级的计算机视觉模型。书中涉及的计算机视觉核心任务包括图像分类、目标检测、图像分割、姿态估计以及异常检测等。 在图像分类部分,作者详细介绍了如何使用PyTorch构建高效的图像分类系统,包括数据预处理、模型选择、训练以及优化等关键步骤。目标检测章节则深入讲解了目标检测的原理以及如何实现这一功能,包括区域建议网络(R-CNN)、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等多种流行算法。 图像分割部分让读者了解像素级别的图像理解方法,探讨了如何通过全卷积网络(FCN)以及U-Net等模型对图像进行详细分割。姿态估计章节则侧重于人体姿态估计技术,解释了该技术在运动分析、人机交互等领域的应用。异常检测部分,作者讲述了如何利用深度学习技术发现视觉场景中的异常行为或对象。 在每项技术的讲解中,作者不仅提供了理论知识,还提供了实际的项目案例,通过项目驱动的学习方式,帮助读者将理论知识应用于实际问题的解决中。书中对工业级实践技巧的介绍,让读者了解如何在真实世界的应用场景中优化和调整模型。 此外,本书还介绍了图像的搜索推荐系统和可解释AI技术,这两个领域在当前计算机视觉技术的发展中扮演着越来越重要的角色。图像的搜索推荐系统部分,作者介绍了如何根据图像内容进行有效的搜索与推荐;可解释AI技术部分,则着重于如何让AI模型的决策过程更加透明和易于理解,这对于提高AI在医疗、金融等关键领域的信任度尤其重要。 为了辅助读者更好地理解内容和实践技能,本书提供了配套的代码和数据集,这些资源的开放获取可以让读者更快地上手,并支持二次开发。这样的安排不仅提升了学习效率,也鼓励了读者在实际操作中进行创新和改进。 本书适合那些希望将计算机视觉理论知识转化为实际应用的开发者和研究人员。无论读者是有经验的专业人士,还是正在学习计算机视觉的学生,都可以通过阅读本书,获得宝贵的知识和实践经验,进一步推动自身在计算机视觉领域的深入发展。 本书的版权归属于三位作者,阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马,以及出版社,全书内容受到版权法保护。本书可以在全球范围内,通过实体书或电子书的形式获得,并拥有国际标准书号ISBN-13。 《PyTorch计算机视觉实战》是一本全面介绍计算机视觉和PyTorch框架应用的实战书籍。它不仅涵盖了计算机视觉的核心技术,还提供了实用的代码和项目,是计算机视觉研究者和开发者的宝贵资源。通过本书,读者可以获得构建和部署生产级计算机视觉模型的全面知识,是理论与实践并重的计算机视觉领域重要书籍。
2025-10-08 09:57:41 15.95MB 计算机视觉 PyTorch 深度学习
1
本书深入讲解使用PyTorch构建生产级计算机视觉模型的核心技术。涵盖图像分类、目标检测、图像分割、姿态估计、异常检测等关键任务,结合项目实践与代码实现,帮助读者从入门到精通。通过ResNet、YOLO、Mask R-CNN等主流架构,系统解析卷积神经网络与深度学习模型的设计原理。适合AI开发者、研究人员及计算机视觉爱好者系统学习与工程落地参考。
2025-10-08 09:56:12 15.95MB PyTorch 计算机视觉 深度学习
1
yolo-world ********************* Highlights & Introduction This repo contains the PyTorch implementation, pre-trained weights, and pre-training/fine-tuning code for YOLO-World. YOLO-World is pre-trained on large-scale datasets, including detection, grounding, and image-text datasets. YOLO-World is the next-generation YOLO detector, with a strong open-vocabulary detection capability and grounding ability. YOLO-World presents a prompt-then-detect paradigm for efficient user-vocabulary inference
2025-10-02 20:24:15 2.35MB pytorch pytorch
1
# 基于PyTorch框架的图像分类系统 ## 项目简介 本项目聚焦于基于PyTorch框架开展图像分类模型的训练工作。项目功能丰富,涵盖了模型的定义、训练、验证、测试以及模型参数的保存与加载等一系列操作。训练过程采用CIFAR 10数据集,该数据集包含10个类别的彩色图像,能够为模型提供丰富的训练素材。项目构建了简单的卷积神经网络模型,搭配交叉熵损失函数和随机梯度下降优化器进行训练,以实现精准的图像分类。 ## 项目的主要特性和功能 1. 数据加载与预处理借助PyTorch的DataLoader模块,从本地目录高效加载CIFAR10数据集,并对数据进行预处理,确保其符合模型输入要求。 2. 模型定义运用PyTorch的nn模块精心定义神经网络模型,模型包含多个卷积层、池化层和全连接层,具备强大的特征提取和分类能力。
2025-09-27 16:17:33 3.15MB
1
# 基于Python和PyTorch的PINN求解偏微分方程 ## 项目简介 本项目使用Python和PyTorch实现PINN(PhysicsInformed Neural Network,物理信息神经网络)来求解偏微分方程。PINN是一种结合物理规律与神经网络的方法,能够利用物理先验知识辅助神经网络的训练,从而得到更好的模型性能。本项目通过PINN求解了薛定谔方程和Burgers方程,展示了PINN在求解偏微分方程方面的应用。 ## 项目的主要特性和功能 1. PINN求解薛定谔方程通过PINN网络逼近薛定谔方程的解,使用PyTorch的自动微分功能计算网络输出的梯度,结合薛定谔方程的残差项构建损失函数进行训练。 2. PINN求解Burgers方程利用PINN网络逼近Burgers方程的解,采用与薛定谔方程相似的训练策略,结合Burgers方程的残差项构建损失函数进行训练。
2025-09-26 16:52:09 788KB
1
torch-1.13.1+cu117-cp38-cp38-linux-x86-64.whl
2025-09-25 22:37:32 1.68GB pytorch
1
PyTorch是一个开源的机器学习库,它以Python语言为接口,主要应用于计算机视觉和自然语言处理等深度学习领域。它由Facebook的人工智能研究团队开发,基于Torch库,并且使用和维护都是开源社区。PyTorch采用动态计算图,这使得它在构建复杂的神经网络时更为灵活和直观。它支持GPU加速,适合于研究和产品开发中使用。 深度学习是机器学习的一个分支,它利用人工神经网络的结构来模拟人脑处理信息的方式,从而对数据进行高效率的学习和预测。它要求大量的数据来训练模型,以实现对复杂问题的解决能力。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成效,尤其在图像处理方面,卷积神经网络(CNN)等深度学习模型已经成为了主流技术。 B站,即哔哩哔哩,是一个年轻人的文化社区和视频分享平台,广泛地覆盖了动画、番剧、国创、音乐、舞蹈、游戏、科技、鬼畜、娱乐、影视等多元化的领域。在B站上,有很多专注于技术分享的UP主,他们通过上传教学视频,分享技术经验,吸引了一批热爱学习技术的观众。 刘二大人是在B站上分享技术视频的知名UP主之一,他制作的《PyTorch深度学习实践》是一套面向有一定编程基础和技术背景人群的教学视频。这套教程旨在帮助学习者通过实际操作来掌握使用PyTorch进行深度学习的技术。为了配合教学,刘二大人制作了相关的实践数据集,供学习者下载使用。 在本压缩包中,包含了三个数据文件,分别是names_train.csv.gz、names_test.csv.gz、diabetes.csv.gz。这些数据文件可能包含了用于训练模型的训练集、用于测试模型的测试集,以及可能用于分类、回归分析等不同任务的数据。由于文件已经进行了压缩,学习者需要先将它们解压,然后才能在PyTorch框架中加载和使用这些数据。 对于初学者来说,使用PyTorch进行深度学习实践,首先需要了解深度学习的基本概念,包括神经网络、前向传播、反向传播、损失函数、优化器等。然后,通过实际编写代码,实现简单的神经网络模型,逐步深入到复杂的网络结构设计和训练中去。实践中,数据处理是十分关键的一步,需要对数据进行预处理,如归一化、编码、划分数据集等,以确保模型能够有效地学习。 随着学习的深入,初学者可以尝试解决更加复杂的实际问题,比如图像识别、语音合成、自然语言处理等。在这一过程中,利用PyTorch强大的功能和灵活性,可以不断调整和优化模型,从而提高模型在特定任务上的性能。同时,B站上的相关视频教程也可以提供直观的学习资源,帮助学习者更好地理解和掌握PyTorch的使用方法。 B站UP主刘二大人提供的《PyTorch深度学习实践》数据集,对于想要学习和掌握PyTorch框架的初学者而言,是一个宝贵的资源。通过这些数据集的实践操作,学习者可以将理论知识转化为实际技能,更好地应用于深度学习的各个领域。
2025-09-25 10:51:40 90KB pytorch pytorch 深度学习 数据集
1
在IT领域,特别是自然语言处理(NLP)中,BERT(Bidirectional Encoder Representations from Transformers)是一种革命性的预训练模型,由Google在2018年提出。它通过深度学习技术,利用Transformer架构实现了对文本的上下文感知的语义理解。本项目“Contextual-Embeddings-using-BERT-Pytorch--main”显然是一个使用PyTorch框架实现BERT的示例,重点在于如何在实际应用中获取并使用BERT的上下文嵌入。 让我们深入了解BERT的核心概念。BERT模型设计的目标是捕捉到词语在句子中的前后关系,即双向上下文信息。传统的词嵌入如Word2Vec或GloVe只能提供单向信息,而BERT则通过掩码语言模型(Masked Language Model, MLM)和下一句预测任务(Next Sentence Prediction, NSP)两个预训练任务,使得模型能够理解词语的全面语境。 在PyTorch中实现BERT,通常需要以下步骤: 1. **环境准备**:安装必要的库,如`transformers`,它是Hugging Face提供的库,包含了多种预训练模型,包括BERT。同时,可能还需要`torch`和`torchvision`等库。 2. **加载预训练模型**:使用`transformers`库中的`BertModel`类加载预训练的BERT模型。你可以选择不同的版本,如`bert-base-chinese`用于中文任务。 3. **构建输入**:BERT模型需要的输入包括Token IDs、Segment IDs和Attention Masks。Token IDs将文本转换为模型可以理解的数字序列,Segment IDs区分不同句子,Attention Masks则用于指示哪些位置是填充的(不可见)。 4. **前向传播**:将输入传递给模型,模型会返回每一层的隐藏状态。对于上下文嵌入,通常关注的是最后一层的输出,因为它包含最丰富的语言信息。 5. **获取嵌入**:从模型的输出中提取特定位置的嵌入,这些嵌入可以用于下游任务,如分类、问答或句对匹配。 6. **微调**:如果目标任务与预训练任务不同,需要在加载预训练权重的基础上进行微调。这通常涉及在附加的分类层上进行反向传播。 7. **Jupyter Notebook**:由于标签提到了“Jupyter Notebook”,我们可以假设这个项目是通过交互式笔记本进行的,这便于代码实验、数据可视化和结果解释。 在这个项目中,开发者可能已经实现了以上步骤,并提供了运行示例,让你可以直接在自己的环境中运行BERT,获取上下文嵌入。这可能是对某个具体NLP任务的演示,如文本分类或情感分析。通过阅读和运行这个项目,你可以更深入地理解如何在实践中应用BERT,以及如何利用上下文嵌入来提升模型的表现。
2025-09-24 16:05:34 4KB JupyterNotebook
1
Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以只用到了Transformer的Encoder模块,使用了4层encoder和1层全连接网络的结果,没有用embedding,因为自变量本身就有15个维度,而且全是数值,相当于自带embedding 代码架构说明: 第一步:数据处理 数据是从nhanes数据库中下载的,自变量有15个,因变量1个,每个样本看成维度为15的单词即可,建模前进行了归一化处理 第二步:构建transformer模型,包括4层encoder层和1层全连接层 第三步:评估模型,计算测试集的recall、f1、kappa、pre等 第四步:shap解释,用kernel解释器(适用于任意机器学习模型)对transformer模型进行解释,并且分别绘制每个分类下,自变量重要性汇总图、自变量重要性柱状图、单个变量的依赖图、单个变量的力图、单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等8类图片 代码注释详细,逻辑
2025-09-22 20:43:22 4.78MB xhtml
1
# 基于PyTorch框架的深度学习分类优化实战 ## 项目简介 本项目是一个基于PyTorch框架的深度学习分类优化实战项目,专注于提高图像分类任务的模型准确率。项目通过实现和测试多种优化策略,包括数据增强、模型选择、优化器选择、学习率更新策略和损失函数选择,来提升模型在CIFAR100数据集上的分类性能。 ## 项目的主要特性和功能 1. 数据增强 实现多种数据增强技术,如随机裁剪、随机水平翻转、随机旋转、颜色抖动等,以增强模型的泛化能力。 高级数据增强技术,如随机擦除、MixUp、CutMix、AutoAugment等,通过实验对比选择最优方案。 2. 模型选择 选择并实现多种深度学习模型,包括ResNet、WideResNet、ShuffleNet、MobileNet等,通过实验对比选择最优模型。 探索最新的Transformer模型,如VIT、Swin、CaiT等,以进一步提升模型性能。
2025-09-22 16:23:47 420KB
1