1. 简介 如下所示给出了基于P-MOSFET的四种浪涌电流抑制方案: 图5.78 Single P-MOSFET负载开关电路方案A 图 5.80 Single P-MOSFET负载开关电路方案B 图 5.81 Single P-MOSFET负载开关电路方案C 图 5.82 Single P-MOSFET负载开关电路方案D 后来经过自己的study以及工程师朋友的讨论,方案B和D应用于浪涌电流抑制,有所不妥;主要原因是:在VIN上电的瞬间且Q2/Q4完全导通之前,给输出电容C9/C10/C19/C20充电的浪涌电流会“部分”或“完全”从体二极管流过。 也许有人会问,这样的电路是否会存在P-MOSFET因上电瞬间的浪涌电流而损坏的可能?答案是,在合适选择了P-MOSFET连续漏源电流的情况下,通常不会导致管子损坏。这点,我们后续文章再单独分析。 2. 更新方案 PNP三极管适合做“高边开关”,NPN三极管适合做“低边开关”,这是由它们的结构或导通关断特性决定的。类似的结论是,P-MOSFET适合做“高边开关”,N-MOSFET适合做“低边开关”(如同步BUCK电路的low-side s ### 使用N-MOSFET实现浪涌电流抑制 #### 一、引言及问题背景 在电子设备的设计过程中,为了确保系统的稳定性和可靠性,浪涌电流的抑制变得尤为重要。浪涌电流是指在电源开启瞬间或者负载突然变化时,短时间内通过电源的电流峰值远高于正常工作电流的现象。如果不加以控制,这种瞬态大电流可能会对电源系统造成损害,降低设备的使用寿命,甚至导致故障。因此,选择合适的浪涌电流抑制方法对于提高电子产品的可靠性和稳定性至关重要。 #### 二、基于P-MOSFET的浪涌电流抑制方案及其问题 根据描述,提出了四种基于P-MOSFET的浪涌电流抑制方案(图5.78、图5.80、图5.81、图5.82),其中方案B和D在实际应用中存在一定的问题。主要问题在于,在电源VIN上电的瞬间,且MOSFET尚未完全导通之前,输出电容的充电过程会导致一部分或全部的浪涌电流通过体二极管进行分流。这种现象虽然通常不会导致P-MOSFET损坏(前提是在选择MOSFET时考虑了其连续漏源电流能力),但仍然可能对电路的整体性能产生不利影响。 #### 三、N-MOSFET作为浪涌电流抑制方案的优势 N-MOSFET在电路设计中具有显著优势,尤其是在浪涌电流抑制方面。与P-MOSFET相比,N-MOSFET更适合用作“低边开关”,即放置在电源线的负极位置。这一特性使得N-MOSFET在某些应用中成为更优的选择。以下是两种基于N-MOSFET的更新方案: 1. **方案E**:适用于VCC电源范围不超过Vgs的应用场景。该方案能够有效地控制浪涌电流,同时保持电路的稳定运行。 2. **方案F**:适用于VCC电源范围超过Vgs的应用场景。通过在电容C18上并联电阻R6,并与电阻R5组成分压电路,确保了MOSFET栅极-源极电压不会超出其Vgs范围,从而避免了由于过压导致的器件损坏。 #### 四、分压电阻的计算与应用 针对方案C(图5.81)中提到的分压电阻的计算,当输入电源VIN大于AON6403元件的栅极和源极耐压值±20V时,可通过增加电阻R3来调整栅极电压,使得栅极和源极之间的电压差保持在安全范围内。例如,当VIN=60V时,栅极和源极之间的电压差为5.45V;当VIN=100V时,电压差为9.09V。这两个数值均在±20V的安全范围内,因此无需担心元件损坏的问题。 #### 五、总结 通过对不同方案的比较和分析,可以得出以下结论: - 在基于P-MOSFET的浪涌电流抑制方案中,方案B和D在实际应用中存在一定的局限性,尤其是在处理浪涌电流时,体二极管的存在可能导致电流分流,影响整体性能。 - N-MOSFET作为“低边开关”的特性使其在某些应用场景下成为更佳选择。方案E和F展示了如何利用N-MOSFET有效抑制浪涌电流,同时确保电路的稳定性和安全性。 - 在设计电路时,合理选择分压电阻值对于防止过压情况的发生至关重要。通过适当的计算,可以在保证电路性能的同时,避免元件损坏的风险。 无论是基于P-MOSFET还是N-MOSFET的浪涌电流抑制方案,都需要根据具体的应用需求来选择最合适的解决方案。
2025-07-24 15:52:14 104KB 浪涌防护 电路设计 三极管 MOS管
1
大功率LED技术是现代照明设计中不可或缺的一部分,尤其在室内外装饰和特种照明应用中。大功率LED的功率至少在1W以上,常见的规格有1W、3W、5W、8W和10W。这类LED灯具相较于传统白炽灯而言,在亮度和能效方面有着显著的优势,使得它们在特定领域中的应用越来越广泛。 在LED的应用设计中,恒流驱动和光学效率是两个核心问题。恒流驱动确保LED在不同条件下工作时,电流保持恒定,这对于保持LED性能和寿命至关重要。提高光学效率则意味着最大化发光效能和减少能耗。 文中提到美国国家半导体(NS)公司的产品作为一个设计实例。在选择LED驱动方案时,需要考虑LED灯具的应用环境,例如室内和室外使用场合。AC/DC转换器适合将交流电转换为直流电,而DC/DC转换器则用于调整直流电压的稳定输出。 文中还提及了两种典型的LED驱动应用案例:使用LM2734的AC/DC转换器,用于替代卤素灯的设计,以及使用LM3475、LM2623A和LM3485等方案的DC/DC转换器,适用于LED手电筒和矿灯等设备。 特别值得注意的是,大功率LED驱动电路设计时应考虑散热设计。由于LED功率较高,发热量大,散热设计不良会导致LED工作温度升高,从而影响其性能和寿命。 在设计大功率LED恒流驱动电路时,可以利用DC/DC稳压器的反馈端(FB)实现从恒压驱动到恒流驱动的转换。文中通过LM2734的示例,阐述了如何通过运算放大器和采样电阻调整电流,确保恒定的电流流经LED,从而提高效率和性能。在设计时,还应考虑采样电阻的功耗,使其与DC/DC稳压器的允许范围相符。 总而言之,随着大功率LED技术的不断进步,其在照明领域的应用潜力巨大。掌握大功率LED恒流驱动器的设计技术对于开拓其新应用领域至关重要。通过本文提供的设计实例和分析,可以了解在特定场景下选择合适驱动芯片的重要性,以及如何通过精确控制电路参数来优化LED的性能和寿命。LED驱动电路的设计不仅要考虑电流和电压的稳定性,还需要从实际应用场景出发,结合散热需求来实现高效和可靠的LED照明系统。
2025-07-22 21:27:05 466KB LabVIEW
1
内容概要:本文档是2025全国大学生先进成图技术与产品信息建模创新大赛电子类赛道的模拟赛试题,竞赛时长为3小时,使用嘉立创EDA软件进行。文档详细列出了比赛任务,包括管理文件、制作原理图库元件及PCB封装、抄画电路原理图和生成电路板四个部分。具体任务涉及新建和命名各类文件、创建元件库和PCB封装、绘制动态标题栏和特定电路模块原理图,以及依据严格的设计规范生成符合要求的四层PCB板,确保电路无开路和短路,满足线宽线距、过孔类型、差分线规则等要求,并最终输出光绘文件和装配图。 适合人群:全国大学生,尤其是具有电子CAD基础和对成图技术与产品信息建模感兴趣的在校学生。 使用场景及目标:①帮助参赛选手熟悉和掌握嘉立创EDA软件的操作;②提高学生在电路设计、原理图绘制和PCB布局布线等方面的实际操作能力;③为参加正式比赛做好充分准备,提升竞赛成绩。 阅读建议:由于竞赛任务复杂且细致,建议参赛选手提前熟悉嘉立创EDA软件的各项功能,按照文档中的步骤逐一练习,确保理解每个操作的具体要求,并严格按照设计规范执行,以保证最终成果的质量。同时,建议在练习过程中多参考提供的素材库文件,确保元件调用准确无误。
2025-07-22 17:35:22 1.13MB
1
### 一种基于PWM的电压输出DAC电路设计 #### 摘要及背景介绍 在电子技术和自动化的领域中,数字信号通常需要转换成模拟信号来驱动各种物理设备或传感器。这种转换过程通常由数模转换器(DAC)完成。然而,并非所有微控制器都内置有高精度的DAC模块,这在一定程度上限制了系统的灵活性和成本效益。针对这一问题,作者提出了一种基于PWM(脉宽调制)信号实现DAC的设计方案。这种方法不仅能够显著降低成本,而且还能简化电路设计,提高转换精度。 #### 理论基础:PWM与DAC的关系 **PWM**是一种通过改变脉冲宽度来调制信号的技术。在电子电路中,PWM信号通常表现为一系列等幅不等宽的矩形脉冲,其宽度的变化决定了信号的平均值。理论上,可以通过对PWM信号进行滤波来提取其平均值,从而实现从数字信号到模拟信号的转换。 **PWM到DAC的转换**可以通过以下步骤实现: 1. **理论分析**:通过对实际应用中的PWM波形进行频谱分析,确定其直流分量与交流分量。PWM波形的直流分量与其占空比成正比,而交流分量则是由不同频率的谐波组成。 2. **滤波处理**:利用低通滤波器去除PWM信号中的高频谐波成分,保留其直流分量。这样经过滤波后的信号就代表了PWM信号的平均值,也就是模拟电压输出。 #### 转换误差及其解决方法 在实际应用中,由于PWM信号的特性以及滤波器的设计等因素,可能会引入一定的转换误差。这些误差主要包括: - **非理想低通滤波器**:实际的低通滤波器无法完全去除高频谐波,这会导致输出信号存在一定的纹波。 - **PWM信号的非线性**:实际PWM信号的高低电平可能存在偏差,导致输出电压与预期不符。 - **电路参数不匹配**:例如,电源电压波动、元件老化等都会影响最终的输出精度。 为了减少这些误差,可以采取以下措施: 1. **优化滤波器设计**:选择更合适的滤波器参数,比如提高滤波器的阶数或者使用更复杂的滤波器结构,以更好地抑制高频噪声。 2. **改进PWM信号质量**:确保PWM信号的高低电平稳定,减少非线性效应的影响。 3. **采用温度补偿和校准技术**:定期对电路进行校准,补偿环境温度变化带来的影响。 #### 电路实现方法 文中提出了两种从PWM到0~5V电压输出的电路设计方案: 1. **基本电路设计**:第一种方案相对简单,主要依靠低通滤波器去除PWM信号中的高频谐波成分。这种方法的优点是电路结构简单,但可能在精度方面有所牺牲。 2. **高精度电路设计**:第二种方案通过更加精细的滤波处理和电路设计来提高转换精度。这种方法可能需要更复杂的电路结构和更高质量的元器件,但在实际应用中能够获得更高的转换精度。 #### 结论 基于PWM的电压输出DAC电路设计不仅能够有效降低成本,而且还能够实现较高的转换精度。通过对PWM信号的理论分析、滤波器的设计以及误差控制等方面的研究,可以进一步优化电路性能,满足不同应用场景的需求。未来的研究还可以探索更多提高转换精度的方法,以及如何在保持低成本的同时进一步简化电路设计。
2025-07-21 14:33:55 263KB
1
在现代电子工程领域中,电子电路设计是实现各种电子设备功能的基础。电子工程师和设计师们通过研究和应用电子电路原理图,可以将抽象的电路设计概念转化为具体、实用的产品。《电子电路实用原理图300例.pdf》作为电子电路设计和开发领域的实用参考资料,为专业人员提供了大量经典的电路设计案例,涵盖了从基础的信号放大到复杂的数据处理等多种类型的电子电路设计原理图。 我们不得不提到的是Amplifier电路,这些电路是电子信号处理中的核心部分。Amplifier电路能够有效地增强信号的幅度,无论是运算放大器在模拟电路中的广泛应用,还是差分放大器在提高信号精度上的独到之处,抑或是锁相环放大器在特定频率信号放大中的不可替代性,每种Amplifier电路都有其独特的应用领域和价值。本册子所收录的Amplifier电路原理图将提供给工程师们直观的设计思路和参考方案。 Filter电路是电子信号处理中另一个重要的组成部分。它们能够根据设定的频率范围对信号进行筛选,保证电子设备在特定的工作频段内具有最佳的性能。低通滤波器、高通滤波器、带通滤波器是Filter电路的常见类型,它们各有千秋。通过研究本册子提供的Filter电路原理图,工程师们可以更有效地设计出针对特定频率信号的滤波电路,优化电子设备的性能。 Oscillator电路则是电子电路中产生振荡信号的关键组件。振荡器广泛应用于信号产生、时钟同步以及无线通信领域。从RC振荡器的简单实用,到LC振荡器的高稳定性能,再到晶体振荡器的精准频率控制,不同类型的振荡器电路原理图在本册子中都有所体现,为电子工程师和设计师提供了丰富的设计灵感和选择。 Power Supply电路作为电子设备的“心脏”,其稳定性直接关系到整个系统的工作状态。直流电源、交流电源、电压稳定器等电路设计原理图的收录,让工程师们可以根据不同的应用需求,设计出高效稳定的电源系统,确保设备可靠运行。 在数字电子时代,Digital电路的设计和应用日趋重要。逻辑门电路、计数器电路、寄存器电路等是构成复杂数字系统的基础。本册子所包含的Digital电路原理图将助力工程师们解决各种数字信号处理和数据传输中的技术难题,提高数字电路设计的效率和可靠性。 除了为专业工程师们提供丰富的参考价值,《电子电路实用原理图300例.pdf》也非常适合作为电子电路设计和开发领域的学习资源。对于学生和初学者而言,通过观察和分析这些实用的电路原理图,可以加深对电子电路设计理论的理解,培养实际操作能力和创新思维,为将来的电子工程学习和职业生涯打下坚实的基础。 《电子电路实用原理图300例.pdf》不仅为电子工程师和设计师提供了宝贵的设计参考,也成为了电子电路学习者不可或缺的学习资源。通过系统学习和应用这些实用的电路原理图,能够有效提升电子产品的设计质量和开发效率,进而推动整个电子工程领域的发展和进步。
2025-07-21 09:49:43 9.53MB 电子电路
1
在电子工程领域,电路设计是核心技能之一,无论是硬件开发工程师还是维修技术人员都需要掌握。本资源包"实用电子电路设计电路图和原理图设计"涵盖了电路设计的关键元素,旨在帮助学习者深入理解并掌握电子电路设计的基础知识和实践技巧。 电路图是电子电路设计的直观表达方式,它通过各种图形符号来表示电路中的元件,如电阻、电容、电感、二极管、三极管、集成电路等,并用线条连接这些元件,描绘出电流的流通路径。电路图的理解与绘制能力是电子工程师的基本功,设计师需要能够从电路图中读取出电路的工作原理和功能,同时也需要有能力将设计思想转化为清晰的电路图。 原理图设计则更侧重于电路的功能分析和计算。在原理图设计中,不仅包括元件的图形表示,还包括元件参数的选择和电路性能的计算。例如,电源的选择、放大电路增益的设定、滤波器截止频率的设计等,都需要依据理论知识和实践经验来确定。此外,原理图设计还需要考虑电路的稳定性、抗干扰性以及安全性等方面。 这个资料包可能包含了实际电路设计案例,这些案例涵盖了不同的应用领域,如电源电路、信号处理电路、数字电路等。学习者可以通过分析这些实例,了解不同类型的电路设计思路,以及如何根据需求选择合适的元器件和设计方案。 在学习电路图和原理图设计时,有几点需要特别注意: 1. 元器件的选择:根据电路的需求,正确选择元器件的类型、规格和参数,确保其能在电路中正常工作。 2. 电路布局:合理布局可以减少信号间的干扰,提高电路性能。 3. 安全性考量:考虑电路的电压、电流限制,避免过载和短路等情况发生。 4. 仿真验证:在实际制作电路板前,可以使用电路仿真软件(如LTSpice、Multisim等)进行仿真测试,检验电路的可行性。 "实用电子电路设计电路图和原理图设计"这个资源包提供了一个全面的学习平台,涵盖了从基本电路图识读到复杂电路设计的全过程,对于提升电子电路设计能力大有裨益。通过深入学习和实践,你将能够独立设计出满足特定需求的电子电路,为你的职业生涯添砖加瓦。
2025-07-21 09:48:13 8.73MB 电子电路
1
OFN技术原理介绍: Optical Finger Sensor (OFN)其实是光电鼠标的衍生与微小化的应用;原理是Sensor内部IR LED 发出红外光,通过菱镜折射穿过IR Filter后,照射到手指上,并把影像经过光学透镜,传到CMOS Sensor成像。接着利用内部专用的DSP(数字微处理器)来分析影像特征值在不同时间点的差异性,来判断移动的方向和距离,从而完成定位。OFN由于有较高的定位精度,模块轻薄化,与现有鼠标的习惯类似的特性,所以应用范围非常大,包括Smart Phone、MP4/MP3、MID、遥控器、笔记型计算机等相关产品上。 OFN传感器方案介绍: 该光查找导航传感器基于Avago 公司的ADBS-A320(ADBS-A320数据手册)芯片设计,采用了新的低功耗架构和自动功率管理模式,适合高达15ips的高速运动的检测。由于集成了振荡器和LED,从而使外接元件最小化。自调整帧速以得到最佳性能,可选择分辨率250, 500, 750, 1000 和1250 cpi,运动检测和查找检测引脚输出,双电源2.8V/1.8V或单电源2.8V供电。主要用于查找输入设备,移动设备,综合输入设备和以电池为能源的输入设备。 ADBS-A320特点: 低功耗架构 表面贴装技术 (SMT) 设备 自动调节型省电模式,以便延长电池续航时间 进行高达 15ips 的高速运动检测 自动调节型帧速率,支持最佳性能 运动检测引脚输出 手指检测引脚输出 内部振荡器--无需时钟输入 可选择 250、500、750、1000 和 1250 cpi 分辨率 可选择 2.8V / 1.8V 双电源供电或 2.8V 单电源供电 可选择 2.8V 或 1.8V 标称输入/输出电压 串行外设接口 (SPI) 或双线接口 (TWI) 采用集成式板上芯片工艺封装 870nm 波长的 LED OFN手持演示板架构图 原理图部分展示: 应用 手指输入装置 移动设备 整合型输入设备 电池供电型输入设备 附件内容包括: ADBS-A320数据手册(英文); 该OFN传感器方案原理图PDF档(基于微控制器MPS430F1222IPW芯片SPI通讯控制设计); 参考设计(增量式光电编码器计数器verilog程序和基于STM32的C程序);
2025-07-21 07:07:58 2.99MB 电路方案
1
本项目分享的是基于ATMega8的无刷电机控制器解决方案,见附件下载其对应的电路图PCB及固件源码。无刷电机控制器是可用于为三相无刷电机提供封闭回路的换向控制信号的控制装置,同时利用模式还可对电机速度进行控制并对电机进行必要的保护。该无刷电机控制器由MCU控制部分,IRFR5305和IRFR1205驱动电路及LM78L05电源模块构成。见截图: ATMega8 无刷电机控制器制作成功的实物展示: 说明: 该项目设计资料只作私人用途,准确性没有保证,仅供学习参考。该代码使用BL_Ctrl 1.0版已经开发的硬件。 附件资料截图: 可能感兴趣的项目设计: 【开源】STM32-ESC32无刷电调设计(原理图、PCB源文件、MDK电调程序及上位机) 超级牛的STM32 BLDC直流电机控制器设计,附原理图和源码等
2025-07-20 17:25:12 1.01MB atmega8 电机控制器 电路方案
1
基于TSMC18工艺的Cadence 1.8v LDO与带隙基准电路设计报告,模拟电路设计含工程文件与报告。,基于TSMC18工艺的Cadence 1.8v LDO电路设计与模拟报告(包含工程文件),cadance 1.8v LDO电路 cadance virtuoso 设计 模拟电路设计 LDO带隙基准电路设计 带设计报告(14页word) 基于tsmc18工艺 模拟ic设计 bandgap+LDO 1.8v LDO电路 包含工程文件和报告 可以直接打开 ,关键词:Cadence; Virtuoso; LDO电路; 模拟电路设计; 带隙基准电路设计; TSMC18工艺; 模拟IC设计; 1.8v LDO电路设计; 工程文件; 设计报告。,基于TSMC18工艺的1.8V LDO电路设计与模拟研究报告
2025-07-19 17:16:48 729KB 开发语言
1
STM32F334,全桥逆变,HRTIM用于移相全桥电路的脉冲驱动。CHA1,CHA2互补输出,插入了死区。例程中含有1流水灯2定时器实验3按键检测4外部中断5ADC读取温度6串口通讯7 I2C读取EEPROM
2025-07-19 10:44:26 17.05MB stm32
1