二维卷积实验(平台课与专业课要求相同) 1.手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2.使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3.不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进行分析 4.使用PyTorch实现经典模型AlexNet并在至少一个数据集进行试验分析 (平台课同学选做,专业课同学必做)(无GPU环境则至少实现模型) 5.使用实验2中的前馈神经网络模型来进行实验,并将实验结果与卷积模型结果进行对比分析(选作) 空洞卷积实验(专业课) 1.使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且要堆叠多层并在至少一个数据集上进行实验,从训练时间、预测精度、Loss 2.变化等角度分析实验结果(最好使用图表展示)将空洞卷积模型的实验结果与卷积模型的结果进行分析比对...... 残差网络实验(专业课) 1.实现给定 2.
2024-08-03 21:20:52 750KB 交通物流 pytorch pytorch 深度学习
1
基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测 BP神经网络是一种常用的机器学习算法,广泛应用于数据建模、预测和优化等领域。在催化剂脱硝性能预测中,BP神经网络可以用于建立预测模型,以提高SCR蜂窝状催化剂的脱硝效率。 SCR蜂窝状催化剂是一种广泛应用于烟气脱硝的催化剂,它具有高效、稳定和长久的特点。然而,SCR蜂窝状催化剂的脱硝性能受到多种因素的影响,如温度、氧气含量、氨氮摩尔比、NO浓度等。因此,建立一个能够预测SCR蜂窝状催化剂脱硝性能的模型具有重要的实际意义。 BP神经网络模型可以通过学习实验数据,建立一个能够预测SCR蜂窝状催化剂脱硝性能的模型。在本文中,我们使用BP神经网络模型,选择了空速、温度、氧气含量、氨氮摩尔比、NO浓度五个独立变量,建立了SCR蜂窝状催化剂脱硝性能预测模型。 实验结果表明,BP神经网络模型能够较好地预测SCR蜂窝状催化剂的脱硝性能,绝对误差的平均值为8%,相对误差的平均值为11%。这表明BP神经网络模型能够较好地拟合SCR蜂窝状催化剂的脱硝性能,且具有较高的预测精度。 本文的研究结果表明,BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,为SCR蜂窝状催化剂的实际应用提供了依据。 在SCR蜂窝状催化剂脱硝性能预测中,BP神经网络模型的应用具有以下几个优点: BP神经网络模型可以处理复杂的非线性关系,可以较好地拟合SCR蜂窝状催化剂的脱硝性能。 BP神经网络模型可以自动地选择最优的模型参数,避免了人工选择模型参数的主观性。 BP神经网络模型可以快速地进行预测,具有较高的计算效率。 BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,具有广泛的应用前景。 在SCR蜂窝状催化剂脱硝性能预测中,BP神经网络模型的应用还存在一些挑战,如数据的质量和量的限制、模型的过拟合和欠拟合等问题。这需要我们在实际应用中,进一步改进和完善BP神经网络模型。 BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,具有广泛的应用前景。
2024-08-01 17:54:17 2.42MB 神经网络 深度学习 机器学习 数据建模
1
xlnetmid event classification for financial news
2024-07-31 15:20:42 742.31MB 深度学习
1
深度学习框架三维识别分割,CT,CBCT牙齿重建,识别 本文介绍了一种基于深度学习的三维识别分割方法,用于 CBCT 牙齿重建和识别。该方法通过融合 CT 和 intraoral mesh 扫描数据,实现了高精度的牙齿骨骼重建和识别。 知识点: 1. 深度学习框架:本文介绍了基于深度学习的三维识别分割方法,用于 CBCT 牙齿重建和识别。该方法采用多模态融合技术,融合 CT 和 intraoral mesh 扫描数据,实现了高精度的牙齿骨骼重建和识别。 2. CBCT 牙齿重建:CBCT( Cone-Beam Computed Tomography)是一种常用的医疗成像技术,用于获取牙齿和骨骼的三维图像。本文介绍了一种基于 CBCT 的牙齿重建方法,通过融合 CT 和 intraoral mesh 扫描数据,实现了高精度的牙齿骨骼重建。 3. 多模态融合:本文介绍了一种多模态融合技术,用于融合 CT 和 intraoral mesh 扫描数据。该技术可以实现高精度的牙齿骨骼重建和识别。 4. 深度学习在数字牙科学中的应用:本文介绍了深度学习技术在数字牙科学中的应用,用于实现高精度的牙齿骨骼重建和识别。该技术可以提高牙齿治疗规划和决策的准确性和效率。 5. 牙齿骨骼重建算法:本文介绍了一种基于深度学习的牙齿骨骼重建算法,通过融合 CT 和 intraoral mesh 扫描数据,实现了高精度的牙齿骨骼重建。 6. 牙齿识别:本文介绍了一种基于深度学习的牙齿识别方法,用于识别牙齿的形状和结构。该方法可以提高牙齿治疗规划和决策的准确性和效率。 7. 数字牙科学:本文介绍了数字牙科学在牙齿治疗规划和决策中的应用,通过使用深度学习技术和多模态融合技术,实现了高精度的牙齿骨骼重建和识别。 8. 医疗成像技术:本文介绍了一种基于 CBCT 的医疗成像技术,用于获取牙齿和骨骼的三维图像。该技术可以提高牙齿治疗规划和决策的准确性和效率。 9. 牙齿治疗规划:本文介绍了牙齿治疗规划在数字牙科学中的应用,通过使用深度学习技术和多模态融合技术,实现了高精度的牙齿骨骼重建和识别。 10. 数字牙科学在牙齿治疗中的应用:本文介绍了数字牙科学在牙齿治疗中的应用,通过使用深度学习技术和多模态融合技术,实现了高精度的牙齿骨骼重建和识别。
2024-07-31 10:22:02 26.67MB 深度学习 CBCT
1
1.手动实现前馈神经网络解决上述回归、二分类、多分类任务 分析实验结果并绘制训练集和测试集的loss曲线 2.利用torch.nn实现前馈神经网络解决上述回归、二分类、多分类任务 分析实验结果并绘制训练集和测试集的loss曲线 3.在多分类实验的基础上使用至少三种不同的激活函数 对比使用不同激活函数的实验结果 4.对多分类任务中的模型评估隐藏层层数和隐藏单元个数对实验结果的影响 使用不同的隐藏层层数和隐藏单元个数,进行对比实验并分析实验结果 5.在多分类任务实验中分别手动实现和用torch.nn实现dropout 探究不同丢弃率对实验结果的影响(可用loss曲线进行展示) 6.在多分类任务实验中分别手动实现和用torch.nn实现L2正则化 探究惩罚项的权重对实验结果的影响(可用loss曲线进行展示) 7.对回归、二分类、多分类任务分别选择上述实验中效果最好的模型,采用10折交叉验证评估实验结果 要求除了最终结果外还需以表格的形式展示每折的实验结果
2024-07-29 22:15:36 1.41MB 交通物流 深度学习 神经网络
1
深度学习-目标检测-密集人头检测数据集,brainwash数据集是一个密集人头检测数据集,拍摄在人群出现的各种区域,然后对这群人进行标注而得到的数据集。包含三个部分,训练集:10769张图像81975个人头,验证集:500张图像3318个人头。测试集:500张图像5007个人头。可以用于密集人头目标检测的训练。注意由于系统对文件大小限制,需要分成2个文件,仅仅”深度学习-目标检测-密集人头检测数据集001“文件需要积分,其他不需要。该文件下载后,请继续下载另外一个,在同一个目录下进行解压即可。另外一个与该文件同在一个下载资源中,文件名“深度学习-目标检测-密集人头检测数据集002“
2024-07-28 17:27:04 900MB 深度学习 目标检测 数据集
1
图神经网络GNN数据集,计算机视觉领域数据集,共有221张图,八分类,平均节点数为40,平均边数为97
1
BevFormer+数据集 cocodataset数据集 Marmousi1 mmdetection数据集COCO VIT算法数据集+cifar-10 VOCdevkit+Unet数据集 YOLO5+NEU-DET数据集 small数据集 datasets+DeepLabV3Plus数据集+datasets+EfficientDet数据集,zip ILSVRC2012 img_ val.tar SFC-using-CNN-Parihaka-3D-main.zip unet++数据集医学细胞数据集,zip VOC07+12+test.zip 有地震数据集含有断层数据二维segy文件和三维segy文件
2024-07-28 16:40:23 170B 深度学习 数据集
1
给深度学习入门者的python教程,包括常用的numpy和matplotlib的入门知识,简单易懂。
2024-07-24 10:00:00 1.63MB python 深度学习
1
在IT行业中,深度学习是一种强大的人工智能分支,它模拟人类大脑的工作方式来解析和理解大量数据。这个特定的数据集,名为“建筑物外墙缺陷数据集(开裂,鼓包,脱皮)”,是为训练深度学习模型而设计的,目标是识别和检测建筑物外墙的常见问题,如开裂、鼓包和脱皮。这些缺陷可能对建筑结构的安全性和持久性造成重大影响,因此及时发现并修复至关重要。 数据集是机器学习和深度学习的基础,它由一系列标记的实例组成,这些实例代表了我们想要模型学习的类别。在这个案例中,数据集包含图像数据,这些图像显示了各种外墙缺陷,如开裂的纹理、鼓起的部分以及剥落的涂层。这些图像经过精心挑选和标记,以便模型可以学习区分不同类型的缺陷。 深度学习模型,特别是卷积神经网络(CNN),在图像识别任务上表现出色。CNN通过学习特征来识别图像,例如边缘、形状和颜色,然后将这些特征组合起来以识别更复杂的模式。对于外墙缺陷检测,模型需要学会区分细微的视觉差异,比如裂缝的宽度、鼓包的大小或脱皮的程度。 为了构建这样的模型,我们需要首先进行数据预处理,包括调整图像大小、归一化像素值和可能的增强操作,如翻转、旋转或裁剪,以增加模型的泛化能力。然后,我们将数据集分为训练集、验证集和测试集,用于模型的训练、参数调整和性能评估。 在训练过程中,模型会尝试最小化损失函数,通常采用交叉熵损失,以优化权重和偏差。常用的优化器有随机梯度下降(SGD)、Adam等,它们负责更新模型参数以提高预测准确性。随着训练的进行,模型会逐渐学习到缺陷的特征,并在新的图像上进行预测。 训练完成后,我们可以使用测试集来评估模型的性能。常用的评估指标包括精度、召回率、F1分数和混淆矩阵。如果模型在测试集上的表现令人满意,就可以将其部署到实际环境中,用于实时检测建筑物外墙的缺陷。 在实践中,我们可能还需要考虑其他因素,比如如何将模型集成到现有的建筑维护系统中,如何处理新类型的缺陷,以及如何保证模型在不同光照、角度和天气条件下的鲁棒性。此外,数据集的多样性和平衡性也非常重要,因为不足或偏斜的数据可能导致模型过拟合或欠拟合,从而影响其在真实世界应用中的效果。 这个“建筑物外墙缺陷数据集”为我们提供了一个宝贵的资源,可以用来训练深度学习模型以解决实际的工程问题。通过有效的数据处理、模型选择和训练,我们可以构建出一个能够自动检测外墙缺陷的智能系统,为建筑维护带来更高的效率和安全性。
2024-07-17 16:35:47 79.5MB 数据集 深度学习 缺陷检测
1