机器学习课程设计 人脸识别完整Matlab源码+项目说明.zip 【功能实现】 1.信息隐藏 2.信息解码 3.人脸识别 【注意】 不要改变文件结构!!,.exe文件在exe里,生成的图片及.mat在generated_photo里,一张典例图片在example_photo里,image里是一些README文档需要的照片,resource里的是一些依赖文件,不要动!
基于Opencv+Pyqt5+python实现人脸互换人脸融合人脸特效人脸生成多功能系统完整源码+代码注释+项目说明.zip, 带【GUI界面】 【项目说明】 主要是利用Opencv提供的函数在人脸上实现多功能的特效 在本项目中,实现了一个多功能美颜相机,其中实现了对人脸数据的十种处理:人脸互换(faceswap)、人脸融合(facemorph),人脸特效,人脸检测,人脸美颜,人脸磨皮,调节亮度,调节饱和度,滤镜,风格变换等功能。 本次项目全部使用 Python 编写,在项目设计上遵循着配置灵活、代码模块化的思路,其中功能模块分为调节美颜,人脸识别,人脸替换,人脸融合,人脸迁移,人脸特效,证件照生成等七个功能模块。 界面模块分为调节美颜,人脸迁移,人脸识别,人脸替换,人脸融合,证件照,生成等六个界面模块,其中调节美颜所在界面模块为主界面模块。 界面和功能模块间的逻辑关系大致为:每个界面模块对应其相应的功能模块,界面为交互式界面,触发界面调用对应的功能。
2022-12-16 15:26:21 1.65MB Opencv Pyqt5 GUI界面 人脸特效源码
Haar分类器结合keras-facenet算法实现人脸检测分割及人脸识别考勤系统完整源码+项目说明.zip 【模式识别-人脸识别考勤系统】 利用Haar分类器完成人脸检测、分割;利用FaceNet网络完成人脸识别。 【依赖库】 opencv-python numpy keras-facenet(见 https://pypi.org/project/keras-facenet/ ) Keras TensorFlow 其中,keras-facenet需要下载预训练模型置于~/.keras-facenet目录下,如果你获得的版本在model/目录下没有带该模型,请自行到该库的GitHub仓库页下载,或在第一次调用该库时也会自动下载。 【使用face_manager.py可以进行人脸的录入,注意录入姓名时,之间不要用空格分隔】 【使用main.py可以进行人脸考勤主操作】 准确率达到93.2% 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。
基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip ​ 本程序基于pytorch框架与yolov5物体检测平台,实现了人工智能对FPS(第一人称射击)游戏的辅助瞄准。与传统游戏作弊方式不同,本程序不读取或改动游戏的内存数据,而是通过人工智能实时分析游戏画面、确定敌人位置并移动鼠标射击,反应流程与人脑相同,难以被普通反作弊方式检测。本程序的特点有: 单次识别过程经过反复优化,在RTX30系显卡下单次时延$\leq 0.1s$​ 前后端分离,前端启动器UI界面现代化、扁平化,提供参数调节功能并与后端通过json参数共享 设计演示模式,实时展现AI的识别过程 设计静态和动态模式,在敌人静态和近匀速运动时有可观的射击精准度 适配多款射击游戏,对CS:GO(《反恐精英:全球攻势》)单独优化,考虑到鼠标加速与鼠标灵敏度设置对程序参数的影响
机器学习课程作业_基于卷积神经网络的手写数字识别matlab源码+项目说明.zip 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,可以直接运行得到答案(把minibatch设为1就是SGD,大于1就是MSGD) OPTIMAL是优化版的主函数,可以直接运行得到答案 OPTIMAL_FINALE是最终优化版的主函数,可以直接运行得到答案 toolbox是用工具箱函数写的CNN,可以直接运行得到答案
Matlab课程设计大作业_基于和风天气API开发天气管理查询系统+项目说明.7z Matlab 天气查询软件 Matlab课程设计大作业 使用APP Designer设计 由于天气查询过程中使用了和风天气API(和风天气开发服务 ~ 强大、丰富的天气数据服务 (qweather.com)),web请求过程中需要用到和风天气个人账号的key,我在代码中将其设为空值,具体是46行app的properities设置部分
变电站安全生产的智能化管理系统源码(人脸识别考勤_移动目标跟踪_越线检测_安全措施检测_姿态识别等功能)+项目说明.7z 通过人脸识别功能进行人员的考勤; 通过人员、车辆的检测和识别来实现变电站的智能化管理; 通过安全行为识别和安全区域报警功能来实现对变电站内人员和设备安全的监督; 项目利用DeepSort算法实现作业现场移动目标跟踪定位。 【依赖】 NumPy sklearn OpenCV 【跟踪py文件说明】 detection.py:检测基类。 kalman_filter.py:卡尔曼滤波器实现和图像空间滤波的具体参数化。 linear_assignment.py:此模块包含最低成本匹配和匹配级联的代码。 iou_matching.py:此模块包含IOU匹配指标。 nn_matching.py:最近邻匹配度量的模块。 track.py:轨道类包含单目标轨道数据,例如卡尔曼状态,命中数,未命中,命中条纹,相关特征向量等。 tracker.py:这是多目标跟踪器类。 更多细节,请看资源内的项目说明
基于python实现的BP神经网络手写数字识别模型实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能 课程作业 手写数字数据集 BP网络模型识别手写数字 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。反向传播要求有对每个输入值想得到的已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法。反向传播要求人工神经元(或“节点”)的激励函数可微。
基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能课程作业 手写数字识别 数据集 详细注释 好理解 实验结果及总结 基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z
基于Keras+python实现的声纹识别系统完整源码(可训练和测试)+带数据集+训练好的模型+项目说明.7z 【项目】基于深度学习的声纹识别 【主要功能】 通过声音识别人物 实现原理(流程): 音频 → 提取语音特征(FFT、Mel过滤、MFCC)→ CNN&GRU → Triplet loss损失函数训练 + 预训练 + 训练得结果
2022-12-14 16:26:54 838.53MB 声音识别 python源码 keras源码 MFCC