情感分析已成为社交网络分析的主流研究之一。 它的影响可以在许多实际应用中看到,从舆论分析到营销公众赞誉和信息预测。 然而,大多数现有的研究已经在主观文本的情感分类中进行,复杂的交互文本(例如,在线评论)的情感演变分析尚未被研究界彻底确定目标。 本文关注从天涯论坛收集的中文短文在线评论。 首先,提出了一种有效的情感计算框架来捕捉中国在线评论的内在情感。 它可以准确地计算整个评论的语义方向,而无需昂贵的手工标记种子词。 由于用户的态度可能会相互影响,因此仅依靠历史评论的情感价值来预测其未来的情感行为是非常一方面的。 因此,我们提出一种结合情感计算的基于博弈论的情感演化预测算法,该算法将混合纳什均衡策略作为交互用户的未来情感行为进行计算。 然后,在大规模审查数据集上提供实验结果,以证明我们方法的有效性和准确性。 最后,通过将研究结果应用到幸福感与大众感的成对评估中,我们在天涯论坛的“世界观”板上发现了一些有趣的现象。
2021-05-11 09:06:25 1.25MB Online reviews Affective computing
1
NLP实战之keras+LSTM进行京东评论情感分析python,对语料进行简单分析,然后通过jieba分词、word2vec构造词向量,通过LSTM提取情感特征,利用LR二分类,达到准确度0.91897
2021-05-09 17:24:01 11.83MB LSTM 情感分析 keras NLP
1
利用SVM法处理微博文本数据并对其进行情感分类(Python)
2021-05-04 10:45:20 2.32MB SVM 微博评论 情感分析
1
自然语言情感分析
2021-04-30 09:07:25 201KB 情感分析
1
细粒度用户评论情感分析 在线评论的细粒度情感分析对于深刻理解商家和用户,挖掘用户情感等方面有实质性的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐,智能搜索,产品反馈,业务安全等。 依赖 Python 3.5 PyTorch 0.4 数据集 使用AI Challenger 2018的细粒度用户评论情感分析数据集,共包含6大类20个细粒度要素的情感倾向。 数据说明 数据集中的评价对象按照粒度不同划分为两个层次,层次一为粗粒度的评价对象,例如评论文本中涉及的服务,位置等要素;;层次二为细粒度的情感对象,例如“服务”属性中的“服务人员态度”,“排队等候时间”等细粒度要素。评价对象的具体
1
近年来,文本情感分析技术在网络营销、企业舆情、舆论等扮演越来越重要的角色。鉴于主题模型在文本挖掘领域的优势,基于主题的文本情感分析技术也成为人们关注的热点,其主要任务是通过挖掘用户评论所蕴含的主题、以及对这些主题的情感偏好,来提高文本情感分析的性能。
2021-04-07 20:58:12 428KB 数据分析 python sql 爬虫
1
餐饮行业评论语料用于情感分类 文件为utf-8编码 共两个文件 分别存放正负面数据 pos.txt文件为正面评论文件 每行一条 共83702条 neg.txt文件为负面评论文件 每行一条 共83702条
2021-04-04 21:07:24 34.03MB 语料 餐饮行业评论 情感分析
1
本资源以IMDB电影评论情感分析为例,讲解了自然语言处理的基本知识,比如分词、词嵌入技术等。对于IMDB数据的下载、读取和处理也进行了详细的讲解。 本讲建模采用Keras进行,适用于TensorFlow2.1.里面包含可运行源代码,注释详细,PPT,数据。可以参考中国大学MOOC,深度学习应用开发,浙江大学城市学院的课程。
1
得益于互联网技术的快速发展,情感分析/分类技术近来也受到了大量的关注。情感分析已经成长为自然语言处理(NLP)中最活跃的研究领域之一,而情感分类是众多情感分析任务中必不可少的一环。本文使用文本分类中经典的TextCNN模型,对给定的中文电影评论进行情感分类。通过设计合理的网络结构,并使用pytorch进行实现,取得较为不错的效果。 关键词:情感分类 TextCNN pytorch
2021-03-17 20:19:51 108.84MB CNN 情感分类 深度学习 pytorch
AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用 AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用 AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用
2021-03-03 08:41:34 67.21MB AI Challenger 细粒
1