[{"title":"( 58 个子文件 9.39MB ) 遗传算法图像分割matlab+源代码","children":[{"title":"遗传算法图像分割matlab+源代码","children":[{"title":"遗传算法在图像处理中的应用.pdf <span style='color:#111;'> 448.71KB </span>","children":null,"spread":false},{"title":"基于量子遗传算法的二维最大熵图像分割.pdf <span style='color:#111;'> 290.40KB </span>","children":null,"spread":false},{"title":"基于免疫算法的图像阈值分割.pdf <span style='color:#111;'> 327.98KB </span>","children":null,"spread":false},{"title":"采用遗传算法与最大模糊熵的双阈值图像分割.pdf <span style='color:#111;'> 461.12KB </span>","children":null,"spread":false},{"title":"用matlab做边缘提取的代码","children":[{"title":"edgedetect_basedonWavelet.m <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"lena.JPG <span style='color:#111;'> 34.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"基于遗传算法的自适应最优阈值图像分割技术研究.pdf <span style='color:#111;'> 258.74KB </span>","children":null,"spread":false},{"title":"图像阈值分割算法实用技术研究与比较.pdf <span style='color:#111;'> 368.24KB </span>","children":null,"spread":false},{"title":"基于遗传算法的自适应聚类图像阈值分割方法.pdf <span style='color:#111;'> 426.32KB </span>","children":null,"spread":false},{"title":"基于遗传算法的模糊熵多阈值图像分割.pdf <span style='color:#111;'> 217.77KB </span>","children":null,"spread":false},{"title":"基于遗传算法的阈值图像分割研究(1).pdf <span style='color:#111;'> 283.92KB </span>","children":null,"spread":false},{"title":"基于遗传算法的Otsu法在图像分割中的应用(1).pdf <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"基于改进遗传算法的图像分割.pdf <span style='color:#111;'> 197.57KB </span>","children":null,"spread":false},{"title":"基于遗传算法的聚类分析在CT图像分割中的应用.pdf <span style='color:#111;'> 599.69KB </span>","children":null,"spread":false},{"title":"很像!!基于改进遗传算法的图像分割方法.pdf <span style='color:#111;'> 351.54KB </span>","children":null,"spread":false},{"title":"基于二维最大熵和改进的遗传算法的图像分割.pdf <span style='color:#111;'> 431.39KB </span>","children":null,"spread":false},{"title":"图像分割新方法综述.pdf <span style='color:#111;'> 248.39KB </span>","children":null,"spread":false},{"title":"基于MATLAB的遗传算法的源程序","children":[{"title":"GAOT","children":[{"title":"maxGenTerm.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"coranaEval.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"gademo2.m <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"multiNonUnifMutation.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"coranaMin.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"optMaxGenTerm.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"gaot.ps <span style='color:#111;'> 130.49KB </span>","children":null,"spread":false},{"title":"tournSelect.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"unifMutation.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"roulette.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"gademo1eval1.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"gaot.dvi <span style='color:#111;'> 56.43KB </span>","children":null,"spread":false},{"title":"heuristicXover.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"simpleXover.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"normGeomSelect.m <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"nonUnifMutation.m <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"b2f.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"arithXover.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"initialize.m <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"f2b.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 803B </span>","children":null,"spread":false},{"title":"gaotindex.html <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"gademo1.m <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"parse.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"delta.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"ga.m <span style='color:#111;'> 10.47KB </span>","children":null,"spread":false},{"title":"gademo3.m <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"boundaryMutation.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"calcbits.m <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"binaryMutation.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"基于遗传量子的自适应图像分割算法.pdf <span style='color:#111;'> 204.69KB </span>","children":null,"spread":false},{"title":"基于遗传算法的Otsu法在图像分割中的应用.pdf <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"遗传算法的最佳熵在图像分割中的应用.pdf <span style='color:#111;'> 253.57KB </span>","children":null,"spread":false},{"title":"基于混沌遗传算法的图像阈值分割.pdf <span style='color:#111;'> 296.74KB </span>","children":null,"spread":false},{"title":"一种自适应的多目标图像分割方法.pdf <span style='color:#111;'> 358.64KB </span>","children":null,"spread":false},{"title":"用遗传_神经网络方法进行图像分割的研究.pdf <span style='color:#111;'> 292.61KB </span>","children":null,"spread":false},{"title":"基于遗传算法的阈值图像分割研究.pdf <span style='color:#111;'> 283.92KB </span>","children":null,"spread":false},{"title":"一种基于量子遗传算法的红外图像分割方法.pdf <span style='color:#111;'> 324.19KB </span>","children":null,"spread":false},{"title":"基于遗传算法的二维最小交叉熵的动态图像分割.pdf <span style='color:#111;'> 618.05KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]