结合深度学习技术,提出了一种基于目标检测算法的农田病虫害识别方法,实现了农田病虫害的自动识别,提高了识别精度。 首先,建立有标签的农作物有害生物数据库; 然后使用Faster R-CNN算法,模型使用改进的Inception网络进行测试; 最后,在农作物病虫害数据库上对提出的目标检测模型进行了训练和测试,平均精度高达90.54%。
2022-04-27 17:35:33 413KB Object detection algorithm Faster
1
基于深度学习的轻量化 小目标检测算法研究
2022-04-26 21:04:48 1.89MB 算法 深度学习 目标检测 数据结构
Opencv 基于单高斯模型的运动目标检测算法.zip
2022-04-21 14:05:37 10.16MB opencv 目标检测 算法 人工智能
Opencv实现的运动目标检测算法.rar
2022-04-21 14:05:26 17.92MB opencv 目标检测 算法 人工智能
Opencv实现的运动目标检测算法 Opencv实现的运动目标检测算法 Opencv实现的运动目标检测算法
2022-04-19 19:08:06 17.9MB opencv 目标检测 算法 人工智能
图像目标检测是找出图像中感兴趣的目标,并确定他们的类别和位置,是当前计算机视觉领域的研究热点。近年来,由于深度学习在图像分类方面的准确度明显提高,基于深度学习的图像目标检测模型逐渐成为主流。首先介绍了图像目标检测模型中常用的卷积神经网络;然后,重点从候选区域、回归和anchor-free方法的角度对现有经典的图像目标检测模型进行综述;最后,根据在公共数据集上的检测结果分析模型的优势和缺点,总结了图像目标检测研究中存在的问题并对未来发展做出展望。
1
针对视频监控系统中,复杂环境引起摄像机抖动,造成运动目标检测不准确的问题,提出了一种基于分区灰度投影稳像的运动目标检测算法.首先对每帧图像进行分区,利用分区灰度投影算法对图像各分区的运动矢量进行准确提取和相关性分析,进行抖动判断,并对抖动帧进行运动补偿.然后利用高斯混合背景建模算法进行运动目标提取.最后对目标提取结果进行形态学处理,以进一步提高目标提取的精度.实验结果表明,本文算法较好地消除了场景中运动目标对运动矢量计算的干扰,实现了在摄像机抖动视频场景中的运动目标的准确检测和提取,大大降低了抖动视频目标
2022-03-17 16:05:36 505KB 自然科学 论文
1
基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多盒探测器检测框架的基础上,使用性能更好的Darknet-53作为特征提取网络,加入更深层次的特征融合网络,生成语义信息更加丰富的新的特征预测图。同时在训练策略上使用了一种新的二分类损失函数来解决训练过程中难易样本失衡的问题。在扩展的公开SAR图像舰船数据集上进行验证实验,实验结果表明,所提方法对复杂场景下不同尺寸的舰船目标的检测展现出了良好的适应性。
2022-03-11 16:04:01 14.29MB 机器视觉 合成孔径 神经网络 舰船目标
1
对基于中值相减滤波、最大中值相减滤波、最大均值相减滤波和推广的结构张量的红外弱小目标检测算法的性能进行了评估。针对传统评估方法的不足,提出了一种基于支持向量回归的红外弱小目标检测算法性能评估方法。利用该方法分别从图像背景特性和目标特性2方面对4种检测算法性能的影响进行定量分析和比较。实验结果表明,图像背景特性和目标特性对4种算法的检测性能都有较大的影响,而目标特性与4种算法的检测性能的依赖关系更明显;在4种评估算法中,基于推广的结构张量算法比其他3种传统红外弱小目标检测算法具有更好的鲁棒性。
2022-02-24 19:16:41 1.31MB 自然科学 论文
1
运行环境: 1.python 3.7.4 2.pytorch 1.4.0 3.python-opencv 说明 预训练的权重文件[vgg_16] 具体的配置文件请看Config.py文件 训练运行python Train.py 单张测试 python Test.py 测试视频 python camera_detection.py ##目前进度: 1、PERCLOS计算 DONE 2、眨眼频率计算 DONE 3、打哈欠检测及计算 DONE 4、疲劳检测 DONE 5、人脸情绪检测 DONE 网络检测性能:准确率82.18% 主要文件说明: ssd_net_vgg.py 定义class SSD的文件 Train.py 训练代码 voc0712.py 数据集处理代码(没有改文件名,改的话还要改其他代码) loss_function.py 损失函
2022-02-18 18:15:34 189.55MB Python
1