主要内容是采用DEAP数据集将脑电信号进行频域分段并提取其微分熵特征,为了充分利用空间特征,结合微分熵特征将其构建为一个三维脑电特征,输入到连续卷积神经网络,并最终取得了90.24%的准确率。 提出了一种脑电特征的三维输入形式,并将其输入到连续卷积神经网络中进行情感识别。三维输入的优点是在集成多个频带的微分熵特征的同时保留电极之间的空间特征。 ———————————————— 版权声明:本文为CSDN博主「qq_3196288251」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_45874683/article/details/121356408
关于深度学习, 图像处理.卷积神经网络的大量参考论文文献.
2021-11-08 15:07:01 32.07MB 深度学习 论文文献 图像处理 卷积网络
1
图像超分辨率重建( super - resolution,SR) 是指从观测到的低分辨率图像重建出相应的高.分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值. 近年来,随着深度.学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步. 为了把握目前基于.深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像.超分辨率重建方法进行了梳理,将它们分为两大类( 有监督的和无监督的) 分别进行阐述. 然后,.在公开的数据集上,将主流方法的性能进行了对比分析. 最后,对基于深度学习的图像超分辨率.重建方法进行了总结,并对其未来的研究趋势进行了展望.
1
用卷积滤波器matlab代码 Welcome to CNN learning 徐静 HomePage: 关于CNN的基础知识及相关理论推导可以参考: 目录 ResNet Google Inception DensenNet SENet and ResNeXt R-CNN, Selective Search, SPP-net Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SSD系列 Mask R-CNN YOLO Pelee R-FCN FPN RetinaNet MegDet DetNet ZSD RFBNet DeNet 从MobileNet到ShuffleNet 神经风格转换 人脸识别 图像分割 N种卷积 GANs anchor free 常用图像分类CNN结构 ConvNet:卷积神经网络名称 ImageNet top1 acc:该网络在ImageNet上Top1 最佳准确率 ImageNet top5 acc:该网络在ImageNet上Top5 最佳准确率 Published In:发表源(期刊/会议/arXiv)
2021-10-26 10:13:43 814.97MB 系统开源
1
针对施工环境的复杂性,监管人员对施工人员着装的监督通常存在着一定的困难,较难实现及时、有效的监督等问题,文中提出了一种基于CNN的安全智能监测识别算法。该算法首先通过相关样本图像训练出所需要的安全帽、安全带等四种识别模型。然后利用所得到的模型,对电力施工现场所拍摄的实时图像进行检测识别,从而实现智能化监测。测试结果表明,该算法对于施工人员着装的平均识别准确率可达到89.27 %,验证了该算法的可行性。
1
介绍卷积神经网络基本原理及典型的卷积神经网络模型,可供感兴趣的本科生及研究生学习,特别适合交流汇报
2021-09-27 10:54:15 4.48MB 深度学习 卷积神经网络 CNN
1
如果import其他地方找到的yolo.h5可能导致文件不可用,折腾了一下午,终于搞定了这个文件,现在分享出来~
2021-09-02 13:33:21 194.69MB 深度学习 吴恩达
1
主要说明VGG和Resnet网络提取图像特征
1
ZynqNet:An FPGA-Accelerated Embedded Convolutional Neural Network 基于FPGA加速的卷积神经网络。原版英文论文。使用Xilinx Zynq XC-7Z045
2021-08-21 22:19:01 7.18MB fpga 深度学习 卷积神经网络 zynq
1
这是《听说越来越卷,那我们就用卷积神经网络CNN来识别狗狗吧!!》这篇博文中所使用的数据集,免费放在这里供大家使用了啦。
2021-08-20 09:20:05 750.5MB CNN 人工智能 深度学习 卷积神经网络
1