利用高光谱技术对火龙果可溶性固形物含量(SSC)检测进行研究,为火龙果内部品质无损检测提供科学方法.以火龙果为研究对象,对光谱数据进行预处理,应用连续投影算法(SPA)进行特征变量的选择,通过偏最小二乘法(PLS)和前馈反向传播神经网络法(BPNN)建立预测模型,分析了火龙果果皮对SSC 模型预测精度的影响.实验结果表明:采用平滑去噪(MAS) 效果最优,PLS 模型的交叉验证相关系数(Rcv) 为0.8635,交叉验证均方根误差(RMSECV)为0.6791,可提高火龙果可溶性固形物模型精度;通过SPA 算法能够有效地对光谱数据进行降维处理,采用优选的15 个特征变量建立的BPNN 预测模型的预测相关系数(RP)为0.8411,预测均方根误差(RMSEP)为0.8171;果皮对建模结果会产生一定的影响,完整果PLS 模型的(RP)为0.8999,RMSEP 为0.7208;果肉PLS 模型的RP 为0.9304,RMSEP 为0.5291,果肉SSC 模型比完整果SSC 模型的预测能力略高.研究结果表明基于高光谱技术采集的火龙果漫反射光谱进行SSC 无损检测具有可行性.
1