引入label信息的做法是,给判别器一个额外的one-hot向量作为输入,这个向量代表类别信息,另外,它还有额外的一个类别用来表示无标记的样本。比如,对于MNI
2023-03-20 22:33:54 2.18MB 网络 batch
1
现代雷达对抗技术 作者:张锡祥 介绍雷达对抗技术
2023-03-16 00:50:08 2.75MB 对抗技术
1
对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
随着战场电磁环境的日趋复杂,传统雷达电子战系统无法适应现代战场对抗需求 。文中介绍了电子战系统的内涵与发展方向,总结了认知雷达对抗体系的特点和优势,分析了发展认知雷达对抗系统的必要性和重要性。提出了认知雷达对抗技术的系统架构和处理流程,梳理了认知雷达对抗系统的关键技术,为认知雷达对抗系统的进一步研究和实现提供了方向和思路。
2023-03-14 13:40:56 339KB 认知雷达 电子对抗
1
生成对抗神经网络matlab代码犯罪现场调查谋杀案 描述 利用来自 Wi-Fi 信号的信道状态信息 (CSI) 的无设备被动定位正在Swift成为现实。 虽然此功能将启用新的应用程序和服务,但它也引发了对公民隐私的担忧。 在这项工作中,我们针对此类基于 CSI 的定位方法之一提出了一种精心设计的混淆技术。 特别是,我们通过利用不可逆的随机序列来修改传输的 I/Q 样本。 发射机处的 I/Q 符号操作会在保留通信的同时扭曲 CSI 中的位置特定信息,因此攻击者无法再获得有关用户位置的信息。 我们针对基于神经网络 (NN) 的定位系统测试了该技术,并表明 CSI 的随机化使得不需要的定位实际上不可行。 定位系统和随机化 CSI 管理都是在真实设备中实现的。 我们实验室获得的实验结果表明,所考虑的定位方法(首先在一篇硕士论文中提出)无论环境如何都能顺利运行,并且向 CSI 添加随机信息会扰乱定位,从而为社区提供了一个系统同时具有位置隐私和通信性能。 存储库中包含的内容 使用 Matlab WLAN 工具箱生成 WiFi 帧并使用 SDR 平台传输它们。 每个帧的 CSI 可以随意人为更改,以
2023-03-08 22:23:26 13KB 系统开源
1
ESG工作组 03章三法与程序 01-SelectedDataset / 01-AudioFeatures 01-SelectedDataset / 02-AudioPreprocessing 01-audio-raw.wav: ://sayedqasim.github.io/ESG-WGANGP/03-ChapterThree-MethodsAndProcedures/01-SelectedDataset/02-AudioPreprocessing/01-audio-raw.wav 01-audio-raw-approximated.wav: : 02-audio-trimmed.wav: ://sayedqasim.github.io/ESG-WGANGP/03-ChapterThree-MethodsAndProcedures/01-SelectedDataset/
2023-02-28 10:35:49 133.84MB HTML
1
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.
1
2023年最新入门对抗样本、对抗攻击与防御的最佳教程,里面包含总结好的攻击跟防御代码 并有详细介绍。 有入门到精通,该教程最通俗易懂。 对抗样本是各种机器学习系统需要克服的一大障碍。对抗样本的存在表明模型倾向于依赖不可靠的特征来最大化性能,如果特征受到干扰,那么将造成模型误分类,可能导致灾难性的后果。对抗样本的非正式定义:以人类不可感知的方式对输入进行修改,使得修改后的输入能够被机器学习系统误分类,尽管原始输入是被正确分类的。这一修改后的输入即被称为对抗样本。 敌手在恶意设计扰动,让自动驾驶汽车直线拐弯[10],让目标检测失灵[11],让人脸识别系统失效[12]。我不放心你做事啊,尤其是人命关天的任务。
2023-02-05 22:37:03 6.19MB 对抗样本 对抗攻击 对抗鲁棒性
1
在本文中,我们向您展示如何为生成时装设计建立一个生成对抗网络(GAN)。
2023-02-03 16:40:06 335KB Python artificial-intelligence tensorflow Keras
1
蔡氏电路matlab仿真代码对抗性个性化推荐排名 APR通过执行对抗训练来增强成对排名方法BPR。 为了说明其工作原理,此处通过在用户和项的嵌入向量上添加对抗性扰动来实现MF上的APR。 这是我们对该文件的正式实现: 何湘南,何占魁,杜小雨和蔡达生。 2018.推荐的对抗性个性化排名,在SIGIR'18的会议记录中。 (通讯作者:) 如果您使用这些代码,请引用我们的论文。 谢谢! 环境 Python 2.7 TensorFlow> = r1.0 脾气暴躁> = 1.12 PS。 供您参考,我们的服务器环境为2.20 GHz和64 GiB内存的Intel Xeon CPU E5-2630。 我们建议您的可用内存大于16 GiB,以重现我们的实验。 快速开始 演示:APR的效果 该命令通过在第40个数据集yelp (--adv_epoch)中为预训练的MF模型(--restore)添加对抗性扰动来显示APR的效果。 加载预训练模型后,前40个时期为正常MF-BPR,然后进行对抗训练APR。 python AMF.py --dataset yelp --adv_epoch 40 --epoc
2023-01-29 10:20:36 45.11MB 系统开源
1