研究了基于单片机驱动SA4828芯片控制的鼓风机变频调速系统。对鼓风机变频调速系统的主电路、控制电路、保护电路进行分析。通过计算给出了主电路的整流、滤波、逆变器、IGBT驱动的芯片各个环节的参数。为了使系统具有高可靠性和安全性,给出了过电流和过电压保护电路,通过分析表明系统是可行的,为硬件电路的搭建奠定了基础。
2024-01-16 18:39:35 247KB 变频调速 驱动电路
1
带式输送机盘式制动时会产生剧烈的不稳定冲击,为此研究电液比例溢流阀调速系统。采用AMESim软件建立仿真模型,分析并优化了不同口径的电磁溢流阀的流量变化,分析了制动系统油缸的位移和速度变化情况,满足设计要求。
1
矿井主排水泵担负着井下排水的重要任务,某些矿井因设计选型等原因,水泵的流量和扬程存在不同程度的富余量,为维持水泵的安全稳定运行,采用了出口节流调节方式运行,造成了排水系统综合效率偏低的问题。基于上述情况,提出了新型的永磁调速改造方案,并基于水泵性能曲线、效率曲线回归方程,通过对典型矿井主排水系统的定性与定量分析计算,对永磁调速方案的技术经济性进行研究,给出永磁调速装置适用工况和场合的一般要求。
2024-01-16 16:37:08 292KB 行业研究
1
介绍了矿用永磁调速装置的结构和原理,设计了一种基于正弦曲线的调速沟槽形式,并对调速沟槽的接触应力进行有限元分析计算。将永磁调速装置中的轴向力与气隙值进行函数曲线拟合,结合调速沟槽的特性曲线得出不同气隙下调速所需的扭矩值;通过试验得到执行器实际输出扭矩值,将扭矩的理论计算值与试验结果进行对比,发现两者变化趋势相同,扭矩峰值误差为5.5%,吻合度较高。通过函数曲线拟合的数值计算方法量化了不同气隙下的调速扭矩值,可为永磁调速装置调速机构的研究提供技术支持。
2024-01-10 10:59:09 404KB 行业研究
1
对矿用永磁磁力驱动装置的工作原理进行了研究,并通过实地考察将其与其他连接调速装置如软启动、变频器等进行比较,提出了永磁磁力驱动装置的优缺点,为以后对该装置的进一步研究打下基础。
2024-01-10 10:50:37 423KB 调速装置 磁感应线
1
利用Ansoft Maxwell软件对矿用永磁耦合器建模仿真,得出气隙越小转矩越大且转矩随转差率的变化类似于异步电动机机械特性的结论,分析了通过调节气隙大小,实现调速控制的可行性。提出永磁耦合器调速机构的整体设计方案,并对目前煤矿生产中常用的几种调速控制技术进行了分析对比,揭示永磁传动调速更适合井下恶劣环境的特点。最后探讨在泵类负载上采用永磁耦合器控制转速,可产生显著的节能效果和经济效益。
2024-01-10 10:46:46 298KB 行业研究
1
针对大功率可调速型盘式磁力耦合器运行时,永磁体温度过高且易失效的问题,采用磁路法对导体转子的涡流损耗进行了理论推导,利用有限元软件对大功率高负载工况下的磁力耦合器永磁体稳态温度场进行了研究。研究结果表明,随着转差增大,磁力耦合器中的永磁体温度呈现出逐步增大的趋势;随着磁力耦合器气隙距离的减小,永磁体的最高温度逐步升高;当磁力耦合器的转差在180r/min以下,气隙不小于18mm时,其永磁体温度将保持在55℃以下,永磁体的最大磁能积和剩磁几乎不受影响,可保证磁力耦合器正常高效工作;当磁力耦合器处于大功率高负载工作状态下,气隙距离对永磁体的温度状态影响显著,当转差为180r/min,气隙小于15mm时,永磁体温度将急剧上升,当气隙减小至3mm时,永磁体的实际最高温度将达到180℃以上,剩磁相比于室温下降接近20%,最大磁能积下降约45%。该研究成果对大功率磁力耦合器温度场研究具有一定的参考意义。
2024-01-10 10:27:25 420KB 行业研究
1
针对现有多级胶带调速系统采用二维模糊控制算法存在调节速度与期望速度误差较大的问题,建立了自适应神经模糊推理系统模型,设计了一种基于自适应神经模糊推理系统模型的多级胶带调速系统。该调速系统以第1条胶带的瞬时流量和实时速度为输入量,以变频器的调节频率为输出量实现调速。Matlab仿真结果表明,引入自适应神经模糊推理系统模型的多级胶带调速系统的速度误差可控制在2%以下,运量与带速匹配率得到了优化,对现今煤矿企业的节能减排具有一定的应用价值。
1
针对带式输送机系统耗电量大、机械磨损严重、输送带带速与运量无法合理匹配的工程背景,研究了变频调速控制原理和带式输送机智能调速控制系统设计方法。阐述了影响带式输送机系统能耗的因素,利用传感器实时监测输送带煤流量和带速数据,采用模糊控制算法构建了输送带速度、负载模糊控制器模型,设计了带式输送机智能调速控制系统。测试表明:使用该系统后,带式输送机能够根据负载自适应地调节带速,实现了节能降耗、延长了输送带使用寿命,对提高企业生产效率具有很高的应用价值。
2023-12-16 10:52:01 252KB 行业研究
1
基于51单片机的PWM驱动直流电机按键调速是一种嵌入式系统设计,主要用于实现直流电机的速度控制。该设计通过按键实现电机的调速,使用PWM控制直流电机的转速。 有代码 仿真 有原理图 具体的实现过程如下: 1. 确定直流电机接口:将直流电机的正负极引出单片机的IO口和GND口,以便控制电机的正反转。 2. 设计PWM模块:通过单片机的定时器模块,设计PWM驱动直流电机,具体包括设置PWM输出端口、PWM输出频率、占空比等。 3. 编写按键处理程序:设置按键为外部中断,通过按下按键来调节直流电机的转速,实现速度的精确调节。 4. 进行速度控制:根据按键处理程序中按键的处理结果,自动通过PWM调节直流电机的转速,完成速度控制。 5.速度状态的显示,用数码管显示00 01 10 11 状态。 在实际设计中,需要考虑到电机的响应速度、按键的输出信号等问题,可以使用示波器进一步验证电机控制的有效性。同时需要注意电机转动时可能产生的电磁干扰问题,可以采取加装抗干扰电路等办法来解决。 基于51单片机的PWM驱动直流电机按键调速,可以广泛应用于电子设备、智能家居、机器人控制等领域。
2023-12-07 23:23:10 420KB 51单片机
1