二维框架非线性动力学求解器是一种用于分析复杂结构在动态载荷作用下的行为的工具,特别是当几何非线性效应显著时。这个Matlab实现着重于解决这些问题,为工程师和研究人员提供了一种有效的方式来预测结构的响应。在本文中,我们将详细探讨该求解器的关键组件和背后的理论。 我们要理解"几何非线性"的概念。在结构力学中,当结构的变形程度足够大,以至于不能忽略形状改变对结构刚度的影响时,就会出现几何非线性。这通常发生在大位移、大转角或大应变的情况下。这种非线性现象需要在分析中考虑,否则可能导致计算结果的严重偏差。 该求解器的核心算法是基于Newmark方法,这是一种常用的数值积分方法,用于求解结构动力学方程。Newmark方法通过时间步进来近似结构的运动,它结合了平均加速度、速度和位移,以实现不同稳定性和精度的组合。在"Newmark_Nonlinear.m"文件中,可以找到这种时间积分方法的具体实现。 "Analysis.m"文件很可能是主分析函数,它整合了所有的计算流程,包括加载条件、边界条件、材料模型以及Newmark方法的迭代过程。"Example_Support.m"和"Example_Force.m"可能提供了示例支持条件和外力函数,帮助用户快速理解和应用求解器。 "Element_Analysis.m"涉及的是单元分析,这是结构分析中的关键部分。在这里,二维框架的每个元素(如梁)的局部响应被计算,然后与相邻节点的连接进行集成,形成整体系统的响应。"beam_deformation.m"和"beam_interpolation.m"可能包含了关于梁元素变形和插值函数的代码,这些函数对于准确描述结构变形至关重要。 "Elastic_Plastic_Model_1D.m"可能包含了材料模型的定义,特别是针对一维弹塑性行为的模拟。在结构分析中,材料的行为是决定结构响应的关键因素,弹塑性模型允许结构在达到屈服点后继续发生塑性变形。 "Section_Analysis.m"可能涉及到截面分析,这是评估横截面上应力和应变的关键步骤。在二维框架分析中,横截面的特性(如弯矩、剪力)是计算的重要组成部分。 "Plot_Results.m"很显然是用于可视化输出结果的函数,它可以帮助用户理解结构的动态响应,如位移、速度、加速度等,以及内部变量如应力和应变。 这个Matlab程序提供了一个全面的二维框架非线性动力学求解器,它考虑了几何非线性,并结合了Newmark方法进行时间积分。用户可以通过提供的示例和各种分析功能,对复杂结构在动态载荷下的行为进行深入研究。这个工具对于工程设计和研究,特别是在建筑、桥梁和机械结构等领域,具有很高的实用价值。
2024-07-27 15:54:15 11KB matlab 文档资料 开发语言
1
几何定标是胶子饱和度理论所预测的强子相互作用的性质,并用横向动量与饱和动量的无量纲比率表示速率。 在本文中,我们考虑在sNN = 200 GeV(RHIC)的pp,dAu和AuAu碰撞中以及在sNN = 2760 GeV(LHC)的PbPb碰撞中产生光子,并表明在横向动量范围1 GeV中直接光子的产生 <pT‰4 GeV / c满足几何缩放比例。 通过事先通过饱和动量对Bjorken x和中心性的依赖关系确定的饱和动量的唯一自由参数,可以获得与几何比例尺的极佳一致性。
2024-07-04 15:12:16 297KB Open Access
1
通过本次实验,将老师在课堂上讲解的多边形集合变换算法进行具体代码的实现,对于多边形的几何变换从实现最基本的几何变换开始写起,一开始的图形也不要太过复杂,后面我在扩展功能的时候,才逐渐如鱼得水,说明理论应用到实践还是有点差距的,编程要由浅入深,功能要逐步扩展,切忌浮躁;第二个是矩阵的计算问题,发现没有矩阵的相乘函数,这就需要自己去编写,一开始用数组存放的矩阵,发现这样对于矩阵的计算太不方便,而且对于后面用户增加顶点操作也不好实现,转换思路,采用vector动态存放数组,这样初始化单位矩阵和实现矩阵的计算就没有太复杂了。
2024-05-28 15:32:32 9KB
1
反颗粒几何库 反纹理几何库,由Maxim Shemanarev用C ++编写。 它是一个开源的2D矢量图形库。 Agg根据矢量数据在内存中生成像素图像。 关于该项目 反颗粒几何(AGG)是一个开放源代码的免费图形库,以工业标准C ++编写。 “许可”页面上描述了AGG的使用条款和条件。 AGG不依赖任何图形API或技术。 基本上,您可以将AGG视为一个渲染引擎,该引擎根据某些矢量数据在内存中生成像素图像。 但是,当然,AGG可以做的还不止这些。 AGG的思想和理念是: 抗锯齿。 亚像素精度。 最高的质量。 高性能。 平台独立性和兼容性。 灵活性和可扩展性。 轻巧的设计。 可靠性和稳定性(包括数值稳定性)。 下面有一些关键功能(但不是全部): 具有抗锯齿和亚像素精度的任意多边形渲染。 渐变和Gouraud底纹。 快速滤波的图像仿射变换,包括许多插值滤波器(双线性,双三
2024-05-24 11:21:29 114.12MB library graphics compositor subpixel
1
几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。,辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。
2024-05-23 16:02:49 566KB 信号分解
1
几何力学教材,从基础开始讲起,由简入难,适合几何力学入门。
2024-05-22 16:38:33 10.61MB 几何力学 分析力学
1
这个文档是我从网下载的,比较实用。仅限大家资源共享,文中对光传播过程中的反射、折射现象以及在全发射中出现隐失波的现象进行了仿真研究。这些结果有利于加深对光传播性质的理解。
2024-05-20 08:57:58 1014KB 基础文档
1
关于PyMesh PyMesh是周青楠为在纽约大学攻读博士学位而开发的代码库。 这是一个专注于几何处理的快速原型开发平台。 PyMesh用C ++和Python编写,其中计算密集型功能在C ++中实现,而Python用于创建简约且易于使用的接口。 (模型来源:) 文献资料 快速尝试 也许尝试PyMesh最简单的方法就是通过: docker run -it pymesh/pymesh Python 3.6.4 (default, Feb 17 2018, 09:32:33) [GCC 4.9.2] on linux Type "help", "copyright", "credits" o
2024-05-18 15:25:24 10.58MB python geometry graphics
1
我们基于八元的非缔合代数,为具有局部非几何通量的M-理论背景提出了一种非缔合相空间代数。 我们的建议是基于这样的观察:弦理论中非几何R-磁通背景的非缔合代数可以通过虚构张调产生的简单Malcev代数的适当收缩来获得。 此外,通过研究与扭曲圆环成对的四维局部非几何M理论背景的玩具模型,我们证明了非几何背景“缺少”动量模式。 由此产生的七维相空间可以自然地用假想的张量识别。 这使我们能够将虚构小调的完整非压缩代数解释为弦理论R-磁通代数向M理论的提升,而收缩参数起着弦耦合常数g s的作用。
2024-04-07 02:24:40 521KB Open Access
1
我们研究非阿贝尔规范场对全息特性的影响,例如计算复杂度的演变。 为此,我们选择在AdS时空中定义的Maxwell-power-Yang-Mills理论。 然后,我们通过使用$$ complexity = action $$复杂度= action猜想来寻找YM字段的电荷对复杂度增长率的影响。 我们还研究了存在YM电荷的情况下,扰动在地平线附近的散布以及局部冲击波几何形状的复杂性增长率。 最后我们检查了劳埃德界的有效性机制。
2024-03-23 14:41:28 614KB Open Access
1