基于Ruoyi+Uniapp(前后端分离项目)实现学生考勤系统 学生考勤(口头点名签到、普通签到、位置签(自定义范围签到)、二维码签到、人脸识别签到、手势签到(九宫格)、签到码签到)等其他模块功能.zip 在当今数字化时代,学生考勤系统作为教育机构信息化管理的重要组成部分,对于提升教务管理效率和质量具有重要意义。近年来,随着技术的不断进步,基于Ruoyi框架结合Uniapp技术构建的前后端分离项目,在学生考勤系统的开发中显示出独特的优势。利用Ruoyi框架的高效开发能力和Uniapp的跨平台应用特性,可以为教育机构提供一个稳定、高效、易维护的学生考勤解决方案。 本系统支持多种签到方式,包括但不限于口头点名签到、普通签到、位置签到、二维码签到、人脸识别签到、手势签到以及签到码签到等。这些签到方式不仅满足了教育场景的多样性需求,还增强了系统的灵活性和易用性。例如,位置签到功能允许学生在自定义的地理范围内进行签到,这样既能确保签到的准确性,又能为一些特殊场景下的考勤提供便利。而人脸识别签到和手势签到则为考勤过程带来了高度的安全性和趣味性,增加了系统的互动性。 系统在设计时还充分考虑了易用性和用户体验,使其既适用于传统的PC端管理,也适应于移动端设备,方便教师和管理人员随时随地进行考勤管理和数据查询。此外,系统还具备数据分析和报表生成的功能,可以协助教育机构对考勤数据进行深入分析,从而为教学决策提供科学依据。 Ruoyi框架和Uniapp技术的结合,使得系统前后端分离,前后端团队可以独立开发,提高了开发效率和系统的可维护性。Ruoyi框架以其轻量级、易扩展和模块化的特点,使得后端开发更加高效;而Uniapp则以其强大的跨平台能力,让前端开发人员能够使用统一的开发语言和API完成多端应用的开发工作,极大地节约了开发成本。 值得一提的是,该系统还具备良好的扩展性和兼容性,可以轻松集成更多的功能模块,以应对未来可能的变化和需求的增长。这些功能的加入,不仅提升了系统的实用性,也为用户带来了更加丰富的体验。 在安全方面,系统采取了多种措施来确保数据的安全性和隐私性,包括但不限于数据加密、权限控制、安全审计等,以防止数据泄露或被非法访问。同时,系统还提供了日志记录功能,能够实时记录操作日志和系统日志,帮助管理人员追踪系统使用情况,及时发现并解决问题。 基于Ruoyi+Uniapp构建的学生考勤系统,以其实现方式的多样性、易用性、安全性和可扩展性,为教育机构提供了一个全方位、一体化的考勤管理解决方案,对于推动教育信息化进程具有重要的推动作用。
2025-11-25 16:14:46 2.69MB
1
基于MATLAB的无迹卡尔曼滤波算法参数辨识完整代码实现,MATLAB中完整可运行的无迹卡尔曼滤波参数辨识代码解析与实现,无迹卡尔曼滤波参数辨识MATLAB完整代码可运行 ,无迹卡尔曼滤波; 参数辨识; MATLAB完整代码; 可运行,无迹卡尔曼滤波参数辨识代码MATLAB 在当前的控制系统和信号处理领域,卡尔曼滤波器作为一种有效的递归滤波器被广泛研究和应用。无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)是卡尔曼滤波技术的一个重要分支,其核心思想是利用一组精心挑选的采样点(Sigma点)来近似系统的非线性特性,从而在不损失精度的情况下更准确地描述系统状态的转移。无迹卡尔曼滤波器特别适合于处理非线性系统的状态估计问题。 本文档“无迹卡尔曼滤波参数辨识的完整代码实现”旨在提供一个在MATLAB环境下完整的、可运行的无迹卡尔曼滤波算法实现示例。文档中详细解析了无迹卡尔曼滤波的工作原理,包括其初始化、预测、更新、状态估计和协方差更新等关键步骤。读者通过阅读该文档能够深入理解UKF的算法结构,并能够根据具体应用场景进行代码的调整和优化,实现对自己研究或者工程问题的参数辨识。 文档中提到的“基于学习和数据驱动的无人船舶航向控制和轨迹跟踪”部分,展示了如何将无迹卡尔曼滤波应用于复杂的动态系统的控制和轨迹预测问题。无人船舶作为海洋工程中的重要组成部分,其航向控制和轨迹跟踪技术的研究对于提高船舶的自主导航能力、保障海上交通安全以及开发无人船舶技术具有重大意义。通过数据驱动的方法和无迹卡尔曼滤波算法,可以有效提高对海洋环境变化和船舶动态行为的预测准确性,进而实现对无人船舶更为精确的控制。 在实际应用中,无迹卡尔曼滤波器的参数设置对算法的性能有着直接的影响。参数辨识是优化UKF算法性能的重要步骤。通过调整相关的参数,比如过程噪声和测量噪声的协方差,可以使滤波器更好地适应实际的动态过程和测量噪声特性。参数辨识过程通常涉及到大量试验和仿真实验,以找到最佳的参数配置。 文档中还提供了一些相关的HTML文件和图片资源,这些资源有助于读者更好地理解无迹卡尔曼滤波算法以及如何在MATLAB中实现相关代码。这些图片可能包括算法流程图、系统动态示意图等,有助于可视化复杂概念和算法过程。HTML文件中可能包含了对文档结构的索引或者对特定算法部分的详细介绍,为读者提供了一个清晰的学习路径。 文档“无迹卡尔曼滤波参数辨识的完整代码实现”不仅提供了一个宝贵的无迹卡尔曼滤波算法的实现工具,而且通过丰富的示例和解释,使读者能够更加深入地理解无迹卡尔曼滤波技术,并将其应用到实际的控制系统和信号处理问题中。这种技术的掌握对于工程师和研究人员来说具有很高的实用价值,能够显著提高处理非线性动态系统的效率和精度。
2025-11-25 15:58:50 348KB
1
根据提供的文件信息,我们可以总结出以下相关知识点: CursorFreeVIP重置机器码工具是一款适用于Windows操作系统的软件工具,它的主要功能是重置机器码。机器码是指在软件激活和注册过程中使用的唯一识别码,通常与软件的授权使用相关联。一旦需要重置机器码,可能是因为用户更换了硬件设备、系统崩溃或重新安装操作系统等原因,导致原有的机器码不再适用。 该工具包包含了一个操作手册,这个手册应该包含了使用该软件的详细步骤说明。操作手册是用户指南的一部分,它指导用户如何正确安装和操作软件,以达到其设计目的。尽管这份手册专注于Windows版本的演示,但文件信息表明存在其他电脑版本的重置机器码工具。用户需要自行寻找适用于其他操作系统(如Mac OS或Linux)的版本。 “CursorFreeVIP_1.11.03_windows”是压缩包文件的具体名称,它表明该工具的版本号为1.11.03,专为Windows操作系统设计。通常,版本号可以帮助用户了解软件的更新历史和功能改进,同时也可能暗示着软件的兼容性和稳定性。 在实际使用中,用户应遵循操作手册的指导,确保在重置机器码的过程中避免出现错误操作,以免影响软件的正常使用。此外,由于机器码重置可能涉及到软件的授权和合法性问题,用户在操作之前应确保拥有软件的合法使用权,避免侵犯版权或其他法律风险。 重置机器码通常对于个人用户而言,是一种解决问题的手段,但对于软件开发者和发行商来说,了解如何管理机器码也是维护软件许可机制的重要方面。因此,重置机器码工具的开发和使用在软件授权管理中扮演了关键角色。
2025-11-25 15:52:07 20.59MB
1
将system.img打包生成system.new.dat、system.patch.dat和system.transfer.list文件的python工具包。用法: $ python img2sdata.zip [system.img] [output_idr] 默认读取当前目录下的system.img,输出到otazip目录。
2025-11-25 15:50:57 27KB Android package update
1
C#(VS2019)调用招行薪福通接口 目的是读取薪福通里面的报销单信息,往金蝶云星空里写凭证,不用人工录入凭证 前提工作 先在这创建应用 https://xft.cmbchina.com/open/#/developer/application AppId和AuthoritySecret要记下来,开发时要用的 然后在这里申请你要开通的接口 https://xft.cmbchina.com/open/#/developer/interface 在这里启用你申请的接口 https://xft.cmbchina.com/open/#/application/interface?appId=XXXX (appId=XXXXX是你应用的APPID) 要用到 BouncyCastle.Crypto.dll Newtonsoft.Json.dll XftNewSDK.dll 这3个DLL都可以在薪福通的网站上下载到 没有能不能?能,难搞一些,我是没搞成,提示我签名不正确 以上代码只是成功从薪福通上获取到信息,至于怎样写入金蝶云星空,相信每个金蝶二开人都知道怎样做
2025-11-25 15:48:55 1.14MB
1
vs2017环境下成功编译,vc6.0编译不通过 #include "stdafx.h" #include #include #include #include // 使用该计时器必须包含的文件 #pragma comment ( lib, "Winmm.lib" ) using namespace std; #define LONG 800 // 窗口长 #define WIDE 500 // 窗口宽 #define NUM 13 // 烟花种类数量宏定义 void Init_Fire(); // 初始化烟花 void Load_Image(); // 加载烟花图片 void Shoot(); // 发射烟花 void Chose(DWORD& t1); // 筛选烟花 void Show(DWORD* pMem); // 绽放烟花 void Erase(DWORD* pMem); // 随机擦除像素点 // 烟花结构 struct FIRE { int r; // 当前爆炸半径 int max_r; // 爆炸中心距离边缘最大半径 int x, y; // 爆炸中心在窗口的坐标 int cen_x, cen_y; // 爆炸中心相对图片左上角的坐标 int width, height; // 图片的宽高 int xy[240][240]; // 储存图片像素点 bool show; // 是否绽放 bool draw; // 开始输出像素点 DWORD t1, t2, dt; // 绽放速度 }Fire[NUM]; // 烟花弹结构 struct JET { int x, y; // 喷射点坐标 int hx, hy; // 最高点坐标------将赋值给 FIRE 里面的 x, y int height; // 烟花高度 bool shoot; // 是否可以发射 DWORD t1, t2, dt; // 发射速度 IMAGE img[2]; // 储存花弹一亮一暗图片 byte n : 1; // 图片下标 }Jet[NUM]; // 初始化烟花参数 void Init_Fire() { // 分别为:烟花中心到图片边缘的最远距离、烟花中心到图片左上角的距离 (x、y) 两个分量 int r[13] = { 120, 120, 155, 123, 130, 147, 138, 138, 130, 135, 140, 132, 155 }; int x[13] = { 120, 120, 110, 117, 110, 93, 102, 102, 110, 105, 100, 108, 110 }; int y[13] = { 120, 120, 85, 118, 120, 103, 105, 110, 110, 120, 120, 104, 85 }; for (int i = 0; i < NUM; i++) // 初始化烟花 { Fire[i].x = 0; // 烟花中心坐标 Fire[i].y = 0; Fire[i].width = 240; // 图片宽 Fire[i].height = 240; // 图片高 Fire[i].max_r = r[i]; // 最大半径 Fire[i].cen_x = x[i]; // 中心距左上角距离 Fire[i].cen_y = y[i]; Fire[i].show = false; // 是否绽放 Fire[i].dt = 5; // 绽放时间间隔 Fire[i].t1 = timeGetTime(); Fire[i].r = 0; // 从 0 开始绽放 Jet[i].x = -240; // 烟花弹左上角坐标 Jet[i].y = -240; Jet[i].hx = -240; // 烟花弹发射最高点坐标 Jet[i].hy = -240; Jet[i].height = 0; // 发射高度 Jet[i].t1 = timeGetTime(); Jet[i].dt = rand() % 10; // 发射速度时间间隔 Jet[i].n = 0; // 烟花弹闪烁图片下标 Jet[i].shoot = false; // 是否发射 } } // 加载图片 void Load_Image() { IMAGE fm, gm; loadimage(&fm, _T("fire/flower.jpg"), 3120, 240); for (int i = 0; i < NUM; i++) { SetWorkingImage(&fm); getimage(&gm, i * 240, 0, 240, 240); SetWorkingImage(&gm); for (int a = 0; a < 240; a++) for (int b = 0; b < 240; b++) Fire[i].xy[a][b] = getpixel(a, b); } IMAGE sm; loadimage(&sm, _T("fire/shoot.jpg"), 200, 50); for (int i = 0; i < NUM; i++) { SetWorkingImage(&sm); int n = rand() % 5; getimage(&Jet[i].img[0], n * 20, 0, 20, 50); // 暗 getimage(&Jet[i].img[1], (n + 5) * 20, 0, 20, 50); // 亮 } SetWorkingImage(); // 设置回绘图窗口 } // 在一定范围内筛选可发射的烟花,并初始化发射参数,输出烟花弹到屏幕,播放声音 void Chose(DWORD& t1) { DWORD t2 = timeGetTime(); if (t2 - t1 > 100) { int n = rand() % 20; if (n < 13 && Jet[n].shoot == false && Fire[n].show == false) { Jet[n].x = rand() % LONG; Jet[n].y = rand() % 100 + LONG / 2; Jet[n].hx = Jet[n].x; Jet[n].hy = rand() % LONG / 3; Jet[n].height = Jet[n].y - Jet[n].hy; Jet[n].shoot = true; putimage(Jet[n].x, Jet[n].y, &Jet[n].img[Jet[n].n], SRCINVERT); } t1 = t2; } } // 扫描烟花弹并发射 void Shoot() { for (int i = 0; i < NUM; i++) { Jet[i].t2 = timeGetTime(); if (Jet[i].t2 - Jet[i].t1 > Jet[i].dt&& Jet[i].shoot == true) { putimage(Jet[i].x, Jet[i].y, &Jet[i].img[Jet[i].n], SRCINVERT); // 烟花弹的上升 if (Jet[i].y > Jet[i].hy) { Jet[i].n++; Jet[i].y -= 5; } putimage(Jet[i].x, Jet[i].y, &Jet[i].img[Jet[i].n], SRCINVERT); if ((Jet[i].y - Jet[i].hy) * 4 < Jet[i].height) // 上升到高度的 3 / 4,减速 Jet[i].dt = rand() % 4 + 10; if (Jet[i].y <= Jet[i].hy) // 上升到最大高度 { putimage(Jet[i].x, Jet[i].y, &Jet[i].img[Jet[i].n], SRCINVERT); // 擦掉烟花弹 Fire[i].x = Jet[i].hx + 10; // 在烟花弹中间爆炸 Fire[i].y = Jet[i].hy; // 在最高点绽放 Fire[i].show = true; // 开始绽放 Jet[i].shoot = false; // 停止发射 } Jet[i].t1 = Jet[i].t2; } } } // 绽放烟花 void Show(DWORD* pMem) { // 烟花个阶段绽放时间间隔,制作变速绽放效果 int drt[16] = { 5, 5, 5, 5, 5, 6, 25, 25, 25, 25, 55, 55, 55, 55, 55 }; for (int i = 0; i < NUM; i++) { Fire[i].t2 = timeGetTime(); // 增加爆炸半径,绽放烟花,增加时间间隔做变速效果 if (Fire[i].t2 - Fire[i].t1 > Fire[i].dt&& Fire[i].show == true) { if (Fire[i].r < Fire[i].max_r) { Fire[i].r++; Fire[i].dt = drt[Fire[i].r / 10]; Fire[i].draw = true; } if (Fire[i].r >= Fire[i].max_r - 1) { Fire[i].draw = false; Init_Fire(); } Fire[i].t1 = Fire[i].t2; } // 如果该号炮花可爆炸,根据当前爆炸半径画烟花,颜色值接近黑色的不输出。 if (Fire[i].draw) { for (double a = 0; a <= 6.28; a += 0.01) { int x1 = (int)(Fire[i].cen_x + Fire[i].r * cos(a)); // 相对于图片左上角的坐标 int y1 = (int)(Fire[i].cen_y -
2025-11-25 15:48:14 5.55MB
1
本文介绍了如何结合双目视觉技术和YOLO目标检测算法实现3D测量。双目技术通过两个相机模拟人眼视觉,计算物体深度信息,适用于三维重建和距离测量。YOLO算法以其快速高效的特点,适用于实时目标检测。文章详细阐述了双目标定、立体校正、立体匹配和视差计算的原理及实现步骤,并提供了相关代码示例。通过将双目技术与YOLO结合,成功实现了3D目标检测和体积测量,展示了较高的精度,但也指出周围环境需避免杂物干扰。 在本文中,双目视觉技术和YOLO目标检测算法被结合起来进行3D测量。双目视觉是一种利用两个摄像机模拟人类的双眼视觉的算法,可以计算物体的深度信息,非常适合进行三维重建和距离测量。通过双目技术,我们可以从两个不同角度拍摄同一个物体,然后通过计算两个图像之间的视差(即同一物体在两个图像中的相对位置差异),来推算出物体的深度信息。这种技术在机器视觉、自动驾驶汽车、机器人导航等领域有着广泛的应用。 YOLO(You Only Look Once)是一种实时的目标检测算法。它的特点是速度快,效率高,能够实时地在图像中检测和定位多个物体。YOLO将目标检测问题视为一个回归问题,将图像划分为一个个格子,每个格子预测中心点落在该格子内的边界框和类别概率。这种方法极大地提高了目标检测的效率。 文章详细介绍了如何将双目视觉技术和YOLO算法结合起来进行3D测量。需要进行双目标定,即确定两个相机的内部参数和外部参数。然后进行立体校正,使得两个相机的成像平面共面,并且两个相机的主光轴平行。接着进行立体匹配,找到左图和右图之间的对应点。最后进行视差计算,计算出对应点在两个图像中的相对位置差异,即视差。通过视差和双目标定的结果,可以计算出物体的深度信息,从而实现3D测量。 文章还提供了相关的代码示例,帮助读者更好地理解和实现双目视觉和YOLO的3D测量。通过实际的案例,我们可以看到,将双目视觉技术和YOLO结合起来,可以成功实现3D目标检测和体积测量,展示了较高的精度。但是,这种方法也有其局限性,比如周围的环境需要尽量避免杂物干扰,否则可能会影响测量的精度。 双目视觉技术和YOLO目标检测算法的结合,为3D测量提供了一种新的方法。这种技术具有速度快、精度高的特点,可以在许多领域得到应用。但是,如何提高测量的精度,避免周围环境的干扰,还需要进一步的研究和改进。
2025-11-25 15:42:45 75KB 计算机视觉 3D测量 目标检测
1
本文分享了作者对a_bogus加密的逆向分析过程。作者通过参考相关文章和B站视频(版本V1.0.1.5),成功逆向出a_bogus的生成逻辑,并指出关键点如_tnc_request_url的重要性及a_bogus生成位置的影响。整个分析耗时两天,最终实现了完美调用。文末提供了交流方式,包括网址和扫码联系途径。 在本文中,作者详细分享了对a_bogus加密技术的逆向分析过程。作者首先参考了相关文章和B站视频(版本V1.0.1.5),然后通过逐步分析,揭示了a_bogus加密生成逻辑。在分析过程中,作者特别强调了_tnc_request_url的重要性,指出其在加密过程中的关键作用。同时,作者还发现a_bogus生成位置的影响,这一发现对于理解整个加密机制至关重要。 作者通过对a_bogus的逆向分析,成功掌握了其生成逻辑,整个分析过程耗时两天。在分析结束时,作者不仅完全理解了a_bogus加密的机制,而且达到了能够完美调用的程度。这表明作者的逆向分析技能相当扎实,能够深入理解复杂的加密技术,并在实际应用中发挥出来。 文章的作者提供了交流方式,包括网址和扫码联系途径,以便读者在理解过程中遇到问题可以及时与作者沟通。这样的交流方式能够更好地帮助读者解决实际问题,提升学习效率。 在软件开发领域,对加密技术进行逆向分析是一项非常重要的技能。通过逆向分析,开发者可以更好地理解加密技术的工作原理,提升对加密和安全技术的认识。同时,逆向分析对于软件包、源码、代码包的安全性分析具有重要的意义。它可以帮助开发者找到可能存在的安全隐患,提高软件的整体安全性。 在实际应用中,开发者往往需要对各种加密技术进行深入分析,以确保软件的安全性。尤其是在开发涉及金融、数据处理等敏感信息的软件时,对加密技术的逆向分析尤为重要。通过逆向分析,开发者可以发现加密技术的潜在缺陷,对软件进行优化,从而提升软件的稳定性和安全性。 对于a_bogus这样的加密技术,逆向分析不仅可以帮助开发者掌握其工作原理,还可以发现潜在的改进空间。比如,在本文中作者提到的_tnc_request_url的重要性以及a_bogus生成位置的影响,这些发现对于后续的软件开发和优化具有重要的指导意义。开发者可以根据这些关键点,对软件进行相应的改进,提升软件的安全性和稳定性。 本文不仅为读者展示了一个完整的逆向分析过程,还提供了深入理解加密技术、提升软件安全性的案例。作者通过具体的技术分析,为软件开发领域提供了宝贵的实践经验。
2025-11-25 15:40:43 6KB 软件开发 源码
1
PCB相关标准要点总结。包括GJB和SJ: GJB3243A-2021《电子元器件表面安装要求》 GJB4057A-2021《军用电子设备印制板电路设计要求》 GJB 362C-2021《刚性印制板通用规范》 GJB 7548A-2021《挠性印制板通用规范》 GJB 10115-2021《微波印制板设计规范》 GJB 2142A-2011《印制线路板用覆金属箔层压板通用规范》 SJ 20810A-2016《印制板尺寸与公差》 SJ 21481-2018《高速电路导线特性阻抗控制要求》 SJ 21554-2020《印制板背钻加工工艺控制要求》 SJ 21305-2018《 电子装备印制板组装件可制造性分析要求》 SJ 21150-2016 《微波组件印制电路板设计指南》
2025-11-25 15:24:41 2.47MB 信号完整性 硬件研发
1
在工业机器人项目自动化场景中,单纯的整型数据已无法满足高精度测量需求。本文在原有ADC数据采集方案基础上,通过​​Modbus RTU协议扩展​​实现以下功能升级: 新增1路16位浮点数(3.3V量程) 新增1路32位双精度浮点数(±2.5V量程) 保持原有4通道ADC数据传输 本方案在原有ADC数据采集基础上,重点实现单双精度浮点数(float&double)的Modbus传输验证, 博客地址:https://blog.csdn.net/vor234/article/details/147104964
2025-11-25 15:18:39 6.87MB ModbusRTU
1