吴恩达在自己的推特上发布了一个问题,称自己因为Landing.ai的项目到访很多国家,和非常多的CEO交流过他们的AI策略,想基于此发布一个报告,因此也向大家征集最想了解的问题。
2024-03-30 07:57:17 447KB 深度学习
1
机器学习多层感知器实践完整源代码,MLP识别MNIST手写数字数据集(Pytorch)
2024-03-29 16:35:48 22.52MB pytorch 数据集 MNIST 机器学习
1
matlab精度检验代码深度学习 这是针对KTH 2017的个别课程分配的存储库。此存储库中的代码主要在Matlab中完成,并且训练过程中涉及的操作(例如,梯度计算和参数更新)以一般的方式(低级)实现。 数据集 对于作业1-3 对于作业4 内容 作业1:具有多类输出的一层网络(测试准确度:40.42%) 报告:+ 作业2:具有多层输出的两层网络(测试准确度:54.06%) 报告:+ 作业3:具有多类输出的k层网络(测试准确度:54.8%) 报告:+ 作业4:香草RNN逐个字符地合成英文文本 报告:+
2024-03-29 04:08:13 184.2MB 系统开源
1
日月光华老师 PyTorch深度学习简明教程 课件csv+代码
2024-03-28 22:31:28 156KB pytorch pytorch 深度学习 课程资源
1
作为Deep learning领域的model的重要开发工具,pytorch一直以来倍受广大研究人员的好评。以下附上由ML学习初学者公众号领头人黄海广博士翻译的“60分钟入门深度学习工具-PyTorch”,让大家感受不一样的学习节奏。
2024-03-28 21:42:41 1.78MB pytorch
1
Deep learning library for Swift for TensorFlow
2024-03-28 20:23:51 33KB Swift开发-机器学习
1
自动驾驶源码的介绍: 1、数据采集:使用树莓派4B连接摄像头,并采集用于训练的图像数据。通过将摄像头安装在小车上,可以实时地采集道路图像以及与行驶相关的信息,如车道线、交通标志等。 2、数据预处理:对采集到的图像数据进行预处理,包括图像去噪、尺寸调整和颜色空间转换等。这些预处理步骤旨在提高深度学习算法的准确性和效率。 3、深度学习模型训练:使用深度学习框架(如TensorFlow或PyTorch)构建自动驾驶模型。这个模型可以使用卷积神经网络(CNN)来处理图像数据,并对图像中的车道线进行检测和跟踪。 4、模型优化和调试:通过反复训练和调整深度学习模型,进一步优化自动驾驶算法的准确性和鲁棒性。这可以包括调整模型的超参数、增加训练数据量和进行模型压缩等。 5、实时控制:将训练好的模型加载到树莓派4B上,实现实时控制小车的输出。通过将模型与小车的电机控制器或舵机控制器连接,可以根据模型的预测结果进行自动驾驶控制。
2024-03-28 18:27:06 10KB tensorflow 自动驾驶 python
1
西南交通大学 机器学习 实验10.docx
2024-03-28 17:36:43 286KB 交通物流 机器学习
1
西南交通大学 机器学习 实验9.docx
2024-03-28 17:36:20 155KB 交通物流 机器学习
1
西南交通大学 机器学习 实验8.docx
2024-03-28 17:35:39 77KB 交通物流 机器学习
1