Recurrent neural networks are popular tools used for modeling time series. Common gradient-based algorithms are frequently used for training recur- rent neural networks. On the other side approaches based on the Kalman filtration are considered to be the most appropriate general-purpose training algorithms with respect to the modeling accuracy.
2021-08-23 00:59:10 6.13MB RNN; KF
1
BA_Networks.m
2021-08-22 09:08:39 4KB Matlab 复杂网络 相依网络
1
WS_Networks.m
2021-08-22 09:08:39 5KB Matlab 复杂网络 相依网络
1
(Princeton Series in Applied Mathematics) Mehran Mesbahi, Magnus Egerstedt-Graph Theoretic Methods in Multiagent Networks (Princeton Series in Applied Mathematics)-Princeton University Press (2010)
2021-08-20 16:36:57 4.86MB graph theory
1
论文《Dilated Residual Networks》的pytorch源码,python3环境。
2021-08-20 10:26:58 454KB DRN 空洞卷积
1
基于卷积神经网络的语音活动检测器 该GitHub存储库是以下论文的代码伴奏: 用于实时语音活动检测的卷积神经网络智能手机应用程序Abhishek Sehgal和Nasser Kehtarnavaz-达拉斯德克萨斯大学 摘要:本文提出了一种智能手机应用程序,该应用程序基于卷积神经网络执行实时语音活动检测。 讨论了实时实现问题,这些问题显示了如何解决与卷积神经网络相关的缓慢推理时间。 开发的智能手机应用旨在充当助听器信号处理管道中降噪的开关,从而能够在嘈杂的语音信号的仅噪声部分进行噪声估计或分类。 将开发的智能手机应用程序与以前开发的语音活动检测应用程序以及两种被引用率很高的语音活动检测算法进行比较。 实验结果表明,使用卷积神经网络开发的应用程序优于以前开发的智能手机应用程序。 资源 可通过以下链接获得与该工作有关的支持材料: 关联 描述 IEEE访问手稿 在Android和iOS智
1
ER_Networks.m
2021-08-17 22:13:05 1KB Matlab 复杂网络 相依网络
1
焦点损失 降低了分类良好的示例的权重。 这样做的净效果是,将更多的培训重点放在难以分类的数据上。 在我们的数据不平衡的实际环境中,由于我们拥有更多的数据,我们的多数阶级将很快得到很好的分类。 因此,为了确保我们在少数族裔班上也能达到很高的准确性,我们可以使用焦点损失在训练过程中为那些少数族裔班级提供更多的相对权重。 焦点损失可以很容易地在Keras中实现为自定义损失函数。 用法 以焦点损失为样本编译模型: 二进位 model.compile(损失= [binary_focal_loss(alpha = .25,gamma = 2)],指标= [“准确性”],优化程序= adam) 分类的 model.compile(损失= [categoical_focal_loss(alpha = [[。25,.25,.25]],gamma = 2)],指标= [“准确性”],优化程序= ad
1
Michael Nielsen 大神的 《Neural Networks and Deep Learning》中文+英文+Python3代码,Michael Nielsen 大神的 《Neural Networks and Deep Learning》中文+英文+Python3代码
2021-08-17 10:33:37 33.98MB 神经网络 深度学习
1