(1)时序预测(2)绘制预测值和真实值对比曲线(3)绘制真实值和预测值的误差对比曲线(4)可以通过更改参数显示多个预测值
2023-02-21 00:03:22 5KB 神经网络预测
1
为了提高脉搏波识别的准确率,提出改进的深度融合神经网络MIRNet2.首先,经过主波提取、划分周期和制作hdf5数据集等,获得Caffe可处理的数据集.其次,提出由Inception模块和残差模块构成的融合网络Inception-ResNet (IRNet),包含IRNet1、IRNet2和IRNet3.在此基础上,改进Inception模块、残差模块和池化模块,构造Modified Inception-ResNet (MIRNet),包含MIRNet1和MIRNet2.与本文其它神经网络相比,MIRNet2的分类性能最好,特异性、灵敏度和准确率分别达到87.85%、88.05%和87.84%,参数量和运算量也少于IRNet3.
2023-02-20 16:39:40 2.08MB 脉搏波 识别 卷积神经网络 Google
1
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。
1
在Tensorflow中使用记忆增强神经网络进行一枪学习。 更新:添加了对Tensorflow v1 *的支持。 本文采用记忆增强神经网络的一站式学习的Tensorflow实现。 目前的执行进度: 实用功能: 图像处理器 指标(精度) 相似度(余弦相似度) LSTM控制器和存储单元 批处理发生器 Omniglot测试人员代码 通过自动编码器进行无监督功能学习 牛/新出生识别 基准数据集是。 所有数据集都应放置在文件夹中。 亚当·桑托罗,谢尔盖Bartunov,马修Botvinick,大安Wierstra,蒂莫西Lillicrap,一次性学习与记忆,增强神经网络,[ ]
1
针对煤层底板突水预测问题,在总结现有突水预测方法和理论的基础上,通过特征选择实验得出水压、距工作面距离、砂岩段厚度、煤层厚度、煤层倾角、断层落差、是否裂隙带、开采面积、采高、走向长度是影响突水发生的主要因素,这些因素具有复杂、非线性的特点。提出基于长短时记忆(LSTM)神经网络构建的突水预测模型,将煤矿突水实例的数据作为样本数据对模型进行训练。最后,将LSTM神经网络模型与遗传算法–反向传播(GA-BP)神经网络模型和反向传播(BP)神经网络模型进行对比实验。实验结果表明,LSTM神经网络模型在测试集上的预测正确率更高,稳定性更好,更加适用于煤层底板突水预测。
2023-02-20 15:03:58 378KB 行业研究
1
lssvm算法适用于各类学习,倾侧有效。相关学习的研究者欢迎参考
2023-02-20 10:02:42 609B lssvm
1
具有随机权重的前馈神经网络的迭代学习算法
2023-02-20 07:53:45 611KB 研究论文
1
中文新闻分类模型,利用TextCNN模型进行训练,TextCNN的主要流程是:获取文本的局部特征:通过不同的卷积核尺寸来提取文本的N-Gram信息,然后通过最大池化操作来突出各个卷积操作提取的最关键信息,拼接后通过全连接层对特征进行组合,最后通过交叉熵损失函数来训练模型。
2023-02-19 17:06:30 48.44MB TextCNN 文本分类
1
SwaNN是基于粒子群优化(使用Python包PySwarms(https://pyswarms.readthedocs.io/en/latest/)的神经网络的基本框架。zip文件包含SwaNN.py中的主要程序,大约30个示例:-分类-回归-时间序列预测如果有人对此类感兴趣,我需要一些关于类构建的帮助(我既不是Python专家也不是OOP专家)...在Google Colab中:https://colab.research .google.com / drive / 1u6SOydDUThUrhTfaic2NiyDhh1ZGRJsH?usp = sharing新增功能:-重新组装并清洁了jupyter笔记本
2023-02-19 11:29:07 5.31MB 开源软件
1