SwaNN:神经网络的PSO-开源

上传者: 42125192 | 上传时间: 2023-02-19 11:29:07 | 文件大小: 5.31MB | 文件类型: ZIP
SwaNN是基于粒子群优化(使用Python包PySwarms(https://pyswarms.readthedocs.io/en/latest/)的神经网络的基本框架。zip文件包含SwaNN.py中的主要程序,大约30个示例:-分类-回归-时间序列预测如果有人对此类感兴趣,我需要一些关于类构建的帮助(我既不是Python专家也不是OOP专家)...在Google Colab中:https://colab.research .google.com / drive / 1u6SOydDUThUrhTfaic2NiyDhh1ZGRJsH?usp = sharing新增功能:-重新组装并清洁了jupyter笔记本

文件下载

资源详情

[{"title":"( 49 个子文件 5.31MB ) SwaNN:神经网络的PSO-开源","children":[{"title":"SwaNN","children":[{"title":"SwaNN_time_serie3.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie1.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_waveform2.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_house1.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_blobs.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_sunspot.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie6.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_wine2.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_wine_quality2.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie2.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_carbon_nanotubes2.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_temperature.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_airfoil_self_noise.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_birth.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_Gaussian.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_wine1.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_iris3.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"SwaNN.py <span style='color:#111;'> 10.40KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_algebraic.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_HTRU_2.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_waveform1.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_pseudo_periodic.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"sunspot.csv <span style='color:#111;'> 43.98KB </span>","children":null,"spread":false},{"title":"temperature.csv <span style='color:#111;'> 66.33KB </span>","children":null,"spread":false},{"title":"waveform-+noise.data.csv <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"winequality-red.csv <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"birth.csv <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"synthetic.csv <span style='color:#111;'> 15.45MB </span>","children":null,"spread":false},{"title":"HousesInfo.csv <span style='color:#111;'> 12.33KB </span>","children":null,"spread":false},{"title":"HTRU_2.csv <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"airline-passengers.csv <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"shampoo.csv <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"airfoil_self_noise.csv <span style='color:#111;'> 58.58KB </span>","children":null,"spread":false},{"title":"winequality-white.csv <span style='color:#111;'> 258.23KB </span>","children":null,"spread":false},{"title":"waveform.data.csv <span style='color:#111;'> 542.48KB </span>","children":null,"spread":false},{"title":"carbon_nanotubes.csv <span style='color:#111;'> 613.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"SwaNN_time_serie4.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_passenger1.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_wine_quality1.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_iris2.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"SwaNN_test_clustering.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_iris1.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_carbon_nanotubes1.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_moons.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"SwaNN_regressor_house2.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_passenger2.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"SwaNN_classifier_12_blobs.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie_shampoo.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"SwaNN_time_serie5.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明