本程序使用python进行编译,实现了高校二手闲置品交易平台的设计。程序包含如下内容: 用户注册登录:平台应该支持用户注册和登录功能,以便用户可以创建个人账户并上传自己的闲置品。 闲置品上传:用户应该能够上传自己的闲置品,包括物品的图片、描述、价格等信息。 闲置品搜索与浏览:平台应该提供搜索和浏览功能,以便用户可以方便地找到自己需要的物品。 闲置品交流与交易:平台应该支持用户之间的交流和交易功能,例如私信、议价、下单等。 数据分析与统计:平台应该能够进行数据分析和统计,以便了解用户的交易行为和需求,为平台的优化提供依据。
2024-08-16 15:35:52 3KB python 数据分析 二手交易平台
1
【企业微信自动加好友软件】是一款基于易语言开发的工具,主要用于提高企业用户在微信上的工作效率,通过自动化的方式批量添加微信好友。易语言是中国本土的一种编程语言,以其易学易用的特点,使得开发者能够快速构建应用程序。这款软件的源代码开放,意味着用户可以查看和修改程序的内部逻辑,以满足特定需求或进行二次开发。 软件的核心功能在于自动化地执行添加好友的操作,这对于拥有大量潜在客户的企业而言,无疑节省了大量的手动操作时间。它可能包含了以下几个关键知识点: 1. **网络通信**:软件需要与微信服务器进行交互,发送请求并接收响应,这涉及到HTTP协议或者腾讯提供的API接口,需要理解网络通信的基本原理。 2. **数据解析**:在接收到微信服务器的响应后,需要解析JSON或其他格式的数据,提取出用于加好友的信息,如用户ID、验证信息等。 3. **模拟操作**:软件需要模拟人工操作,如点击“添加好友”按钮,输入验证信息等,这可能涉及到Windows API调用,如发送消息函数(SendMessage)。 4. **多线程技术**:为了实现批量添加,软件可能采用了多线程技术,每个线程处理一个加好友的任务,提高并发性,提升效率。 5. **错误处理**:在自动化过程中,可能会遇到各种错误,如网络连接问题、微信服务器的限制等,因此软件需要有完善的错误处理机制,确保在出现问题时能及时反馈并尝试恢复。 6. **权限控制**:企业微信可能有特定的API权限限制,需要在代码中进行相应的认证和授权,确保软件能合法地执行操作。 7. **易语言编程基础**:学习和理解易语言的语法和库函数,如流程控制、变量定义、函数调用等,是阅读和修改源代码的基础。 8. **用户体验**:软件应提供友好的用户界面,如进度显示、操作提示等,以增强用户体验。 对于熟悉易语言的开发者来说,这个项目提供了实践和学习的机会,可以深入了解如何利用易语言实现网络通信、自动化操作等功能。同时,源代码的提供也方便了那些希望定制化软件功能的企业进行二次开发。而对于伸手党(指那些希望不劳而获的人)来说,提供的exe文件可以直接运行,无需编程知识也能使用。 总结,"企业微信自动加好友软件E易语言源代码"是一个涉及网络通信、数据解析、模拟操作等多个编程技术的项目,不仅为企业提供了批量添加微信好友的解决方案,也为开发者提供了学习和实践易语言的实例。
2024-08-16 15:11:37 937KB
1
标题中的“Excel内容异同比对VB代码演示.rar”指出,这是一个使用Visual Basic(VB)编写的程序,其目的是对比和检查两个Excel文件的内容差异。在IT领域,这种功能通常用于数据验证、审计或数据分析,确保两个数据源的一致性。 描述进一步解释了这个程序是一个示例,展示了如何在VB中实现Excel文件的比较。通过分析和运行这个程序,用户可以学习到VB如何处理Excel文件,包括读取、比较和显示不同之处。这涉及到VB的Excel对象模型,如Workbook、Worksheet、Range等,以及相关的编程技巧。 标签“VB源码-文件操作”表明,重点在于VB的文件处理能力,尤其是与Excel文件交互的部分。在VB中,这通常涉及使用Microsoft Excel Object Library,调用诸如Workbooks.Open、Worksheets.Copy、Range.Value等方法来打开、操作和读写Excel文件。 在压缩包内的文件“codesc.net”,很可能包含了源代码和可能的说明文档。如果源代码可用,用户可以查看具体的编程实现,例如: 1. 如何使用`Workbook.Open`打开Excel文件。 2. 如何使用`Worksheets`集合访问工作表,并使用`Range`对象选取特定区域进行比较。 3. 使用循环和条件语句(如If...Then...Else)来检测并标记不一致的数据。 4. 可能会用到的错误处理机制,如`On Error`,以处理可能的运行时错误。 5. 如何将结果输出或者显示给用户,可能是通过消息框(MsgBox)或者在新的Excel工作表上。 学习这样的示例,开发者可以提升在VB中操作Excel文件的技能,这对于需要处理大量结构化数据的项目尤其有用。这不仅可以帮助自动化重复的任务,还能提高数据处理的效率和准确性。同时,理解VB代码的基础结构和逻辑,对于进一步学习其他编程语言和开发工具也有很大帮助。 这个压缩包提供的资源是一个宝贵的VB学习素材,特别是对于那些需要进行Excel数据处理和比较的IT专业人士。通过深入研究和实践,开发者可以掌握更多关于VB文件操作和Excel接口的知识,增强自身的编程技能。
2024-08-16 14:53:07 13KB VB源码-文件操作
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1
这项工作的目的是提出对电能分配系统技术规划方法的调整,以考虑使用电能发电和消耗的随机分布。在本研究中,可以计算公交车上的负载,找到所有涉及该问题的大小,从而可以估计和更换负载超过66%的导体。OPENDSS用于计算IEEE123和MATLAB网络功率流的资源,用于数据管理、网络、噪声过滤、网络操作等资源。此外,在模拟效率流以及发电点和消耗点的排列之后,可以计算整个网络的重新供电成本。
2024-08-16 14:00:27 1.41MB matlab
1
### RTC提交代码步骤详解 #### 一、RTC简介与应用场景 RTC(Rational Team Concert)是一款由IBM开发的协作软件平台,主要用于支持敏捷项目管理、持续交付和版本控制。它提供了一个集成的工作环境,帮助团队成员高效地进行软件开发、测试和部署。RTC通过其强大的功能集,在大型企业和组织中得到了广泛应用。 #### 二、RTC提交代码的基本流程 在深入探讨具体的提交步骤之前,我们先来了解一下RTC中代码提交的一般流程。这通常包括以下几个关键步骤: 1. **获取最新的源代码**:确保本地工作区与远程仓库同步。 2. **进行更改**:根据需求或任务描述修改代码。 3. **添加变更集**:将修改后的文件放入变更集中。 4. **提交变更集**:向远程仓库提交变更集,并附带相应的注释说明。 5. **审查与合并**:提交后,变更可能需要经过代码审查,然后才能被合并到主分支。 #### 三、具体提交步骤详解 接下来,我们将基于给定的部分内容,详细解释如何在RTC中提交代码。 1. **登录RTC界面**: - 打开浏览器,访问RTC的网址:`https://scm.int-bjrcb.com/ccm/`。 - 登录您的账户。如果未注册,请按照页面提示完成注册流程。 2. **准备提交**: - 在RTC界面中,找到您想要提交的代码变更。通常情况下,您需要先在本地环境中完成代码修改,并将其加入到变更集中。 - 确保所有必要的修改都已经完成,并且通过了本地测试。 3. **选择变更集**: - 在变更集列表中,双击颜色较深的变更集条目以选中它。这里提到的“颜色深”,通常是指已经准备好提交的变更集,它们会以更醒目的颜色显示。 - 如果您想要搜索特定的变更集,可以在搜索框中输入关键词(例如“赵鹏程”),以快速定位到相关的变更集。 4. **关联变更集**: - 在选中的变更集上右键点击,选择“浏览”或“查看”选项。 - 在弹出的窗口中,找到与您当前提交相关的变更集,如“赵鹏程”的变更集,然后点击“选择”或“确定”。 5. **填写提交信息**: - 在提交界面上,填写详细的提交信息,包括但不限于提交原因、修改内容等。 - 如果需要,可以添加更多的备注或者附件。 6. **保存并切换用户**: - 完成提交信息的填写后,点击“保存”按钮。 - 根据实际情况,您可能需要切换到其他用户身份进行后续操作。比如示例中的“切换”操作,可能是为了切换到用户“zhaopc”(赵鹏程)的身份继续操作。 7. **输入密码**: - 如果系统提示需要密码验证,则输入该用户的密码。例如,这里提供的密码是“090501”。 8. **最终提交**: - 点击“提交”按钮,完成代码提交过程。 - 如果提交成功,系统通常会给出相应的确认消息。 #### 四、注意事项 - 在提交代码前,请确保所有的修改都已经过充分测试,避免引入新的bug。 - 提交信息应尽可能详细,便于其他团队成员理解您的改动意图。 - 如果变更涉及到多个文件或模块,建议将它们归类到同一个变更集中,以简化审查流程。 - 在大型项目中,建议使用代码审查机制,以提高代码质量。 通过以上步骤,您可以顺利完成RTC中的代码提交过程。对于初次接触RTC的开发者来说,熟悉这些基本操作是非常重要的。希望本篇文章能帮助您更好地理解和掌握RTC的使用方法。
2024-08-16 13:29:20 151KB
1
### Matlab:DY溢出指数代码及原数据解析 #### VAR模型概述 本文旨在介绍如何使用MATLAB实现一种简化形式的向量自回归模型(Vector Autoregression, VAR),并基于此模型计算动态溢出指数(DY Spillover Index)。VAR模型是一种广泛应用于经济和金融时间序列分析中的统计工具,它允许我们研究多个时间序列之间相互作用的方式。 ### 简化形式的VAR模型 简化形式的VAR模型可以表示为: \[ y_t = \nu + A_1 y_{t-1} + A_2 y_{t-2} + \ldots + A_p y_{t-p} + u_t \] 其中: - \( y_t \) 是 \( k \) 维的内生变量向量。 - \( A_i \) 是 \( k \times k \) 的系数矩阵。 - \( u_t \) 是误差项。 该模型可以通过等价的形式转化为VAR(1)模型: \[ Y_t = v + A Y_{t-1} + U_t \] 其中: - \( Y_t = \begin{bmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{t-p+1} \end{bmatrix} \) - \( A = \begin{bmatrix} A_1 & A_2 & \ldots & A_{p-1} & A_p \\ I_k & 0 & \ldots & 0 & 0 \\ 0 & I_k & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & I_k & 0 \end{bmatrix} \) ### 移动平均表示法 如果假设VAR(p)过程是稳定的,则其移动平均表示可通过连续替换得到。具体来说,\( Y_t \) 可以表示为: \[ Y_t = A(L)^{-1} \nu + A(L)^{-1} U_t = A(L)^{-1} \nu + \sum_{i=1}^{\infty} \Phi_i U_{t-i} \] 其中: - \( A(L)^{-1} = \sum_{i=0}^{\infty} \Phi_i L^i \) - \( \Phi_i = J A_i J' \),其中 \( J = [I_k, 0_{k \times k(p-1)}] \) - \( \Phi_0 = I_k \),且对于 \( i > 0 \),有 \( \Phi_i = \sum_{j=1}^{i} \Phi_{i-j} A_j \) ### 预测误差方差分解(FEVD) 预测误差方差分解(FEVD)是用来分析每个外生冲击对预测误差方差的贡献程度的方法。对于水平 \( h \) 处的预测误差 \( y_{k,t+h} - y_{k,t(h)} \): \[ y_{k,t+h} - y_{k,t(h)} = \sum_{i=1}^{\infty} \Phi_i u_{t+h-i} \] 其中 \( \Sigma_u = E(u_t u_t') \) 是误差项的协方差矩阵。如果 \( \Sigma_u = P \Sigma_w P' \),其中 \( \Sigma_w = I_K \),则 \( \Theta_i = \Phi_i P \)。 ### DY溢出指数 Diebold 和 Yilmaz (2009) 提出了溢出指数来衡量跨企业、市场或国家的溢出效应。溢出指数定义为: \[ \text{Spillover Index} = \frac{\sum_{k,j \in \{1..K\}, k \neq j} \text{FEVD}_{kj}(h)}{\sum_{k,j \in \{1..K\}} \text{FEVD}_{kj}(h)} \] 其中,\( \text{FEVD}_{kj}(h) \) 表示第 \( j \) 个冲击对第 \( k \) 个变量在水平 \( h \) 上预测误差方差的贡献。通过构造迪伯德-伊尔马兹连通性表(FEVD 表),可以直观地理解这些贡献。 ### 方向性连接 在迪堡和伊尔马兹的工作中还提出了方向性连接的概念,用于衡量不同实体之间的信息流动方向。例如,从其他国家到国家 \( i \) 的总方向性联系 \( C_i \leftarrow \ast \) 定义为: \[ C_i \leftarrow \ast = \sum_{j=1, j \neq i}^N dH_{ij} \] 同时,与其他国家的完全定向联系 \( C_\ast \leftarrow j \) 定义为: \[ C_\ast \leftarrow j = \sum_{i=1, i \neq j}^N dH_{ij} \] ### 广义VAR框架下的FEVD 在广义VAR方法中,FEVD 在视界 \( h = H \) 处的计算如下: \[ dH_{kj} = \sigma_j^{-1} \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_j^2 / \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_k e_k \] 其中 \( e_k \) 是 \( I_K \) 的第 \( k \) 列。然而,这种广义FEVD不保证行和或列和为1,因此,迪堡和伊尔马兹 (2012) 建议进行归一化处理。 ### 总结 本文介绍了如何在MATLAB中实现一种简化形式的VAR模型,并基于此模型计算动态溢出指数(DY Spillover Index)。通过上述介绍,我们可以了解到VAR模型在经济和金融领域的应用,以及如何利用MATLAB工具包进行数据分析。DY溢出指数能够帮助我们更好地理解和量化不同实体之间的相互作用和信息流动。此外,文中还讨论了不同的FEVD计算方法,包括传统的乔莱斯基分解和广义VAR框架下的FEVD计算方法,这为我们提供了更多的选择和灵活性。 VAR模型及其扩展在现代经济和金融分析中扮演着重要的角色。通过MATLAB实现这些模型可以帮助研究人员深入理解数据背后的模式和关系。
2024-08-16 11:49:40 22KB matlab
1
在Android开发中,实现类似滴滴打车应用的功能,即在地图上显示多个小车并让它们平滑移动,是一项常见的需求。本项目基于百度地图API,提供了完整的源码实现,包括车辆已有轨迹和无轨迹两种情况。下面我们将深入探讨这个项目所涉及的关键技术点。 1. **百度地图API集成**: 百度地图SDK为开发者提供了丰富的地图展示、定位、路线规划等功能。在项目中,首先需要在Android工程中集成百度地图SDK,通过添加依赖库,设置API密钥,完成地图的基本配置。 2. **地图上显示车辆图标**: 要在地图上显示车辆图标,可以创建自定义的Marker,将车辆图标设置为Marker的BitmapDescriptor。通过MarkerOptions实例化 Marker,并将其添加到地图上,指定其经纬度位置。 3. **平滑移动动画**: 为了让车辆在地图上平滑移动,需要实现一个定时任务(如Handler或CountDownTimer),每隔一定时间更新Marker的位置。通过LatLng对象设定新的经纬度坐标,调用Marker的animatePosition方法,实现平滑移动效果。 4. **轨迹绘制**: 对于已有轨迹的车辆,可以使用百度地图的Polyline功能。首先将轨迹点数据(一系列的LatLng对象)存储在List中,然后使用PolylineOptions对象创建多边形线条,设置颜色、宽度等样式属性,最后添加到地图上。 5. **无轨迹车辆处理**: 对于无轨迹的车辆,可以只显示车辆图标,而不绘制轨迹线。当车辆移动时,仅更新Marker的位置,不涉及轨迹绘制。 6. **实时定位与更新**: 项目可能包含实时定位功能,使用百度地图SDK的LocationClient获取设备的当前位置。定位成功后,更新车辆图标的位置,模拟车辆在地图上的实时移动。 7. **数据结构与数据管理**: 需要合理设计数据结构来存储车辆信息,如车辆ID、当前位置、目标位置、速度等。可以使用ArrayList或其他集合类来管理这些数据。 8. **性能优化**: 为了保证流畅的用户体验,需要关注性能优化,例如避免频繁的UI更新,合理设置动画的执行间隔,以及在适当的时候清除不再需要的Marker和Polyline对象。 9. **交互设计**: 除了地图上的车辆显示,还可能包含用户交互设计,如点击车辆查看详情、拖动地图改变视角等。需要处理触摸事件,实现相应的点击事件监听和手势识别。 10. **异常处理与错误反馈**: 在实际应用中,应考虑网络异常、API调用失败等情况,加入适当的错误处理和反馈机制,保证应用的稳定性和用户体验。 以上就是基于百度地图实现类似滴滴打车应用的核心技术点。通过这个项目,开发者不仅可以学习到如何在地图上显示动态元素,还能掌握地图API的综合运用,为开发其他地理位置相关的应用打下基础。
2024-08-16 11:40:05 11.85MB android源码 仿滴滴打车 地图轨迹
1
Excel·VBA考勤打卡记录统计出勤小时(附件)
2024-08-16 09:46:10 311KB 代码附件
1
ESP32是一款强大的微控制器,集成了Wi-Fi和蓝牙功能,广泛应用于物联网(IoT)项目。IDF,全称Espressif System's Programming Framework,是ESP32的官方开发框架,提供了一套完整的开发环境,包括编译、烧录、调试等工具,帮助开发者高效地构建基于ESP32的应用程序。 本实战代码库涵盖了从基础到进阶的多个ESP32 IDF编程知识点,旨在帮助初学者快速掌握ESP32的开发技巧。以下是一些关键的知识点: 1. **环境搭建**:你需要安装ESP-IDF开发环境,这包括安装Git、Python、CMake、 Ninja等工具,以及配置ESP-IDF的依赖库。此外,还需要设置好ESP-IDF的路径和Python环境变量。 2. **工程结构**:了解IDF项目的标准目录结构,如`main`目录存放主函数和业务逻辑,`include`存放头文件,`src`存放源代码,`app`目录下有`makefile`或`CMakeLists.txt`进行项目配置。 3. **组件和驱动**:ESP32 IDF提供了丰富的硬件抽象层(HAL)和驱动组件,如TCP/IP协议栈、Wi-Fi管理、蓝牙BLE、GPIO、ADC、DAC、PWM等。学习如何配置和使用这些组件,是ESP32开发的基础。 4. **Wi-Fi与蓝牙连接**:通过IDF,可以实现ESP32作为Wi-Fi客户端或AP,进行数据传输。同时,它还支持BLE(Bluetooth Low Energy)连接,用于低功耗设备通信。 5. **任务调度与事件循环**:ESP-IDF采用FreeRTOS操作系统,学习如何创建和管理任务,理解任务优先级和同步机制,以及如何使用事件循环(event loop)处理异步事件。 6. **内存管理**:了解ESP32的内存布局,如IRAM、DROM、DRAM等,以及如何有效地分配和释放内存。 7. **OTA固件更新**:远程Over-the-Air (OTA)更新是物联网设备必备的功能。学习如何在IDF中实现OTA,确保固件安全、可靠地升级。 8. **传感器和外设接口**:学习如何与各种传感器(如温湿度传感器、光线传感器)和外设(如LCD屏幕、电机)进行交互,获取数据并处理。 9. **安全与加密**:ESP32支持多种安全特性,如AES加密、RSA签名等,理解这些安全机制并在项目中应用是必要的。 10. **调试技巧**:学会使用idf.py命令行工具进行编译、下载、调试,以及使用GDB进行远程调试,分析程序运行状态和查找问题。 11. **性能优化**:了解如何通过调整堆栈大小、优化算法、减少内存分配等方式提升程序性能。 12. **能耗管理**:对于电池供电的设备,了解如何进行电源管理,如休眠模式、唤醒机制等,以延长电池寿命。 13. **日志系统**:学习如何使用ESP-IDF的日志系统进行调试输出,以及如何配置日志级别和输出方式。 通过这个实战代码库,你可以一步步实践这些知识点,从简单的LED控制到复杂的网络通信,逐步成长为ESP32 IDF的大师。在每个章节,都会有详细的代码注释和步骤说明,帮助你理解和消化每个知识点。不断实践和积累经验,你将能够应对各种基于ESP32的IoT项目挑战。
2024-08-16 09:17:51 531KB
1