通过将最简单的(3,1)版本的跷跷板机制(包含单个重的“右手”中微子)与最小的暗物质方法结合起来,我们提出了一种中微子振荡理论。 通过跷跷板,“大气”质量标度出现在树的水平,而通过涉及“暗区”交换的循环,“太阳”振动标度以辐射的形式出现。 这种简单的设置可以清楚地解释中微子的振荡长度,具有可行的WIMP暗物质候选物,并且意味着无中微子双β衰减率的下限。
2024-03-01 20:36:03 313KB Open Access
1
我们对中微子质量的跷跷板机制提出了另一种观点,根据该观点,小中微子质量是两个大质量之差。 当使用Bogoliubov转换的类似物来描述跷跷板机制的拉格朗日中的Majorana中微子时,就会出现这种观点,这类似于BCS理论。 当单一风味模型中具有良好CP的右旋中微子质量项严重违反C时,Bogoliubov变换可阐明马里亚纳费米子的自然外观。 分析具有mR = 104到1015 GeV的典型模型,结果表明,要使通常的跷跷板机制在一个 自然设定,即无量纲耦合常数都很小的情况。
2024-03-01 20:33:05 297KB Open Access
1
在最近的一篇论文中,我们提出了一种在最小左右对称模型的背景下测试中微子质量的跷跷板起源的系统方法。 该程序的本质是利用轻子数来抵消双电荷标量(位于基于希格斯机制的跷跷板的核心)的衰变,以探测狄拉克中微子质量项,而狄拉克中微子项又直接进入许多物理过程 包括右手中微子向W玻色子的衰变和左手带电的轻子。 在这个较长的版本中,我们将详细讨论这些过程和相关过程,并提供一些缺少的技术细节。 我们还仔细分析了保平汤川部门的物理吸引力的可能性,表明中微子狄拉克质量矩阵可以解析为轻,重中微子质量和混合的函数,而无需借助任何其他离散对称性。 跷跷板机制可以完全解开。 当平价确实打破时,我们表明,在一般情况下,仅狄拉克质量项的厄米部分是独立的,这大大简化了实验性地测试中微子质量起源的任务。 我们通过一些允许简单分析表达式的物理示例来说明该程序。 我们的工作表明,最小左右对称模型是一个独立的中微子质量理论,原则上可以在大型强子对撞机或下一个强子对撞机上进行测试。
2024-03-01 20:31:51 250KB Open Access
1
我们考虑在最小的反向跷跷板实现中同时解决暗物质问题和中微子质量生成的可能性。 标准模型扩展了两个右手中微子和三个无菌铁电态,从而导致了三个轻活性中微子本征态,两对(重)拟狄拉克质量本征态和一个(大部分)无菌态,其质量在keV附近, 可能提供了一个暗物质候选者,并解释了星系团光谱中最近观察到但仍未识别的单色3.5 keV线。 通过活动中微子的振荡的常规生产机制只能占观察到的文物密度的约43%。 当包括来自光衰变(质量低于20 GeV)的伪狄拉克中微子的熵注入的影响时,可以将其略微增加到4848%。 可以通过沉重的(希格斯质量以上)拟狄拉克中微子的衰变冻结来获得正确的文物密度。 这种产生仅对有限范围的质量有效,使得衰减发生在离电弱相变不太远的位置。 因此,我们提出了一种反向跷跷板框架的简单扩展,并通过额外的标量单线态耦合到希格斯和无菌中微子,这允许在较宽的参数空间区域中实现正确的暗物质丰度,特别是在低空间 准狄拉克中微子的质量区域。
2024-03-01 20:29:37 1.57MB Open Access
1
标准模型(SM)中缺少的中微子质量和风味混合可以自然地合并到SM的I型跷跷板扩展中,而重的Majorana中微子在SM规格组下是单重态。 如果重的马约拉纳中微子在电弱尺度附近,并且它们与SM中微子的混合相当可观,那么它们可以在高能对撞机上生产,留下带有轻子数违反的特征信号。 在最小跷跷板场景中采用中微子Dirac质量矩阵的一般参数化,我们执行参数扫描并从中微子振荡数据,电弱精度测量和轻子味道违规过程中识别出满足各种实验约束的允许区域。 我们发现,重中微子和SM中微子之间的混合参数比从LHC上目前对重中微纳拉中微子的搜索得到的约束更为严格。 将来可以在高亮度LHC和100 TeV pp对撞机上探索这样的参数区域。
2024-03-01 20:28:03 492KB Open Access
1
在跷跷板模型中,在一环水平上讨论了类似于标准模型的希格斯玻色子(LFVHD)h→μτ的轻子味道。 根据Passarino-Veltman函数的特定解析表达式,使用两个unit和't Hooft Feynman量规来计算LFVHD的分支比,并与最近报道的结果进行比较。 在最小跷跷板(MSS)模型中,研究了在新中微子质量尺度mn6的整个有效范围10-9-1015 GeV内的分支比。 使用Casas-Ibarra参数化,该分支比随着mn6的增大和增大而增强。 但是最大值只能达到10-11的数量级。 讨论了由MSS和反向跷跷板(ISS)模型预测的LFVHD的有趣关系。 ISS和MSS预测的两个LFVHD分支比之间的比值只是mn62μX-2,其中μX是ISS中的中微子质量尺度。 通过分析方法可以准确显示出不同计算之间的一致性。
2024-03-01 20:26:13 606KB Open Access
1
在大型强子对撞机开启并积累更多数据之后,一旦小型中微子团以亚eV规模提供中微子质量并可以在大型强子对撞机进行探测,则具有在TeV规模上显着特征的小型中微子质量的小型跷跷板机制将越来越受到关注。 在这方面,反向跷跷板机制作为执行这种提议的有趣候选者而出现。 该机制是规范机制的一种对应形式,该机制要求在高能级上显式违反轻子数,而反之则相反,在低能级上显式违反轻子数。 有三种执行标准跷跷板机制的方法。 它的每一个都有其逆对应项。 在这里,我们的研究限于对II型逆向跷跷板机制的研究。 我们的主要目标是用右旋中微子将这种机制实现为3-3-1模型,但首先,我们将结合模型I和II的反向I型和跷跷板机制的主要思想和后果。 关于3-3-1模型,有趣的结果是,我们证明了该机制可以为标准中微子和惯用右手的中微子提供较小的质量。 作为现象学方面,它的最佳特征是通过3-3-1对称性呈双六边形的双电荷标量。 我们通过过程σ(pp→Z⁎,γ⁎,Z'→Δ++ Δ−−)研究了LHC在LHC上的产生,并通过四个轻子最终状态衰变通道对它们的信号进行了研究。
2024-03-01 20:24:52 709KB Open Access
1
我们基于$$ SU(3)_C \ times SU(3)_L \ times U(1)_X $$ SU(3)C×SU(3)L×U(1)X标尺组提出一个可行的模型 ,并以$$ U(1)_ {L_g} $$ U(1)Lg全局轻子数对称性和$$ \ Delta(27)\ Z_3 \ Z_ {16} $$Δ(27)×来扩充 Z3×Z16离散组,能够解释标准模型(SM)的费米子质量和混合,并具有可以在大型强子对撞机上测试的小型跷跷板机构。 此外,该模型还为SM费米子质量和混合提供了解释。 在提出的模型中,由不可重新归一化的Yukawa算子引起的逆跷跷板机制产生了轻质中微子的小质量,并由三个非常轻的Majorana中微子介导,并且自发产生了观测到的SM费米子质量和混合角层次 在非常大的能量规模下,破坏$$ \ Delta(27)\ Z_ {3}×Z_ {16} $$Δ(27)×Z3×Z16对称性。 在我们以前的3-3-1模型中具有$$ \ Delta(27)$$Δ(27)组的中微子质量生成机制没有出现(Vien等人在Nucl Phys B 913:792,2016,CárcamoHernández
2024-03-01 20:21:57 954KB Open Access
1
我们显示了一个最小(最小)的跷跷板模型,该模型涉及两个右手中微子和一个非常受约束的狄拉克质量矩阵,具有一个纹理零和两个独立的狄拉克质量,可以从半直接的S 4×U(1)对称性产生 超对称模型。 产生的CSD3形式的中微子质量矩阵仅取决于两个实际质量参数和一个不确定的相。 我们展示了如何通过扩展S 4×U(1)对称性以将Z 3因子乘积与CP对称性结合在一起而将相固定为统一的立方根之一,CP对称性被自然破坏而留下单个残差 带电的轻子扇形中的Z 3和中微子扇形中的残余Z 2,抑制了较高阶的校正。 从单一的立方根选择的相位为−2π / 3,该模型预测m 1 = 0,反应堆角θ13 = 8的正常中微子质量层次。 取决于模型对中微子质量的拟合度,太阳角为7°,太阳角θ12 = 34°,大气角θ23 = 44°,并且CP违反振荡相位δCP = -93°。
2024-03-01 20:19:17 485KB Open Access
1
基于最新的中微子振荡数据,该数据与最大的大气混合和最大的轻子CP违背一致,我们回顾了μτ对称性的各种结果,然后包括一些新的观察和澄清,包括确定具有μτ对称性的中微子质量矩阵的新的一般形式。 然后,我们将新结果应用于与Littlest跷跷板模型相关的中微子质量矩阵,并表明它近似满足具有μτ对称性的新通用形式,这是其对最大大气混合和最大CP违反的近似预测的原因。 轻子部门。
2024-03-01 20:16:54 400KB Open Access
1