【图像识别】基于卷积神经网络(CNN)实现垃圾分类Matlab源码
2022-03-14 10:25:11 22KB
1
使用联合边引导卷积神经网络的深度图上采样进行虚拟视图合成
2022-03-14 09:50:53 926KB 研究论文
1
异物侵入铁路限界对铁路系统可靠性造成了极大的威胁。为达到高分类准确率及低模型内存占用率兼备的目的,针对既有技术方法中分类效果、泛化性能较差以及耗时久、模型占用空间大等问题,本文提供了一种快速训练算法,采用网络迁移压缩同时进行的方式,提出基于特征图L1或L2范数的递归式裁剪准则剔除冗余卷积核以压缩网络。对于单个相机新场景的目标分类任务,只需使用在混合场景数据上得到的最优分类网络模型通过压缩和微调训练便可以实现不同场景铁路异物分类的快速训练。实验表明,在基于铁路场景数据库的测试中,该算法可以将原始VGG16模型的参数消耗内存压缩1 020倍,在不同的单个相机场景测试样本库上压缩后网络的分类误差最低为0.34%。
1
随着深度学习的发展,卷积神经网络作为其重要算法被广泛应用到计算机视觉、自然语言处理及语音处理等各个领域,并取得了比传统算法更为优秀的成绩。但是,卷积神经网络结构复杂,参数量和计算量巨大,使得很多算法必须在GPU上实现,导致卷积神经网络难以应用在资源不足且实时性要求很高的移动端。为了解决上述问题,文中提出通过同时优化卷积神经网络的结构和参数来对卷积神经网络进行压缩,以使网络模型尺寸变小。首先,根据权重对网络模型结果的影响程度来对权重进行剪枝,保证在去除网络结构冗余信息的冋时保留模型的重要连接;然后通过量化感知( quanTIκaτion- awareτraining)对卷积神经网络的浮点型权重和激活值进行完全量化,将浮点运算转换成定点运算,在降低网络模型计算量的冋时减少网络模型的尺寸。文中选用 tensorflow深度学习框架,在 Ubuntu16.04操作系统中使用 Spyder编译器对所提算法进行验证实验结果表眀,该算法使结枃简单的 Lenet模型从l.64M压缩至θ.36M,压缩比达到η8%,准确率只下降了了0.016;使轻量级网络 Mobilenet模型从16.9M压缩至3.1M,压缩比达到81%,准确率下降0.03。实验数据说明,在对卷积神经网络权重剪枝与参数量化辶后,该算法可以做到在准确率损失较小的情况下,对模型进行冇α压缩,解决了卷积神经网络模型难以部署到移动端的问题。
2022-03-12 21:27:17 2.46MB 神经网络算法
1
很不错的最新介绍深度学习的文献,仅供大家参考,希望更多的深学爱好者上传分享,谢谢!
2022-03-12 17:23:05 3.67MB 深学
1
内容包含了seed数据集与四份基于seed数据集的脑电情绪识别代码, 每一份代码都可以完整运行。 第一份是svm模型;第二份采用的pytorch框架,模型为svm和卷积神经网络(cnn)的混合模型。第三份是卷积神经网络(cnn)和循环神经网络(rnn)的混合模型。第四份是采用的机器学习算法,包含了五种机器学习常见的算法,例如决策树算法、朴素贝叶斯、K最近邻算法、随机森林算法等等。
针对现有的基于卷积神经网络的图像超分辨率算法参数较多、计算量较大、训练时间较长、图像纹理模糊等问题, 结合现有的图像分类网络模型和视觉识别算法对其提出了改进。在原有的三层卷积神经网络中, 调整卷积核大小, 减少参数; 加入池化层, 降低维度, 减少计算复杂度; 提高学习率和输入子块的尺寸, 减少训练消耗的时间; 扩大图像训练库, 使训练库提供的特征更加广泛和全面。实验结果表明, 改进算法生成的网络模型取得了更佳的超分辨率结果, 主观视觉效果和客观评价指标明显改善, 图像清晰度和边缘锐度明显提高。
2022-03-11 17:01:50 10.43MB 显微 图像超分 深度学习 卷积神经
1
这是卷积神经网络汇报的知识,包括网络的背景、结构、求解以及应用。是初学者很好的资料,希望对你有用。
2022-03-11 11:46:53 1.15MB 卷积神经网络 CNN
1
在智能交通系统中,针对车辆目标检测算法可移植性不高、检测速度较慢等问题,提出了一种基于SqueezeNet卷积神经网络的车辆检测方法。通过融合SqueezeNet与SSD(single shot multibox detector)算法的车辆检测方法,在UA-DETRAC数据集上进行训练,实现了车辆目标的快速检测,提升了模型的可移植性,缩短了单帧检测时间。实验结果表明,所提模型在保证准确率的同时,模型单帧检测时间可达22.3 ms,模型大小为16.8 MB,相较于原SSD算法,模型大小减少了约8/9。
1
深度学习在图像检索方面的应用,主要的思想是利用预训练网络,原文是英文,资源名称是我自己翻译过来的
2022-03-10 09:51:40 4.25MB 深度学习
1