快速谱峭度(FSK)滤波轴承微弱故障检测.rar
2024-04-12 15:21:49 40.63MB JAVAEE 算法模型
1
粒子群算法(PSO)优化双向长短期记忆神经网络的数据分类预测,PSO-BiLSTM分类预测,多输入单输出。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图
2024-04-12 14:36:46 74KB 神经网络
1
针对以往车牌字符分割算法在复杂情况下分割准确率低的问题,提出了一种基于新邻域模板的连通域算法的车牌字符分割算法。采用基于新模板的连通域算法粗分割字符;通过自适应阈值投影法进行字符细分割;同时使用区域合并算法保证字符的完整性。实验结果表明,该算法将连通域法与投影法有效结合,能够同时解决汉字不连通、字符粘连和边框粘连等复杂情况,该算法对车牌字符进行分割正确率达99.5%。
2024-04-12 14:00:31 632KB 论文研究
1
基于MATLAB车牌字符分割的算法研究.pdf
2024-04-12 13:38:40 2.34MB
1
实现lzss压缩/解压算法 跨平台,可移植到单片机及ARM上
2024-04-11 15:33:35 7KB lzss
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
学习研究轨迹停留优化调用MeanShift算法是一项重要的研究工作,它涉及到计算机科学、人工智能、数据挖掘等多个领域。该算法可以帮助我们更好地理解人类行为模式和社会现象,同时也可以为我们提供有用的决策支持。 在学习研究轨迹停留优化调用MeanShift算法的过程中,我们首先需要了解什么是轨迹停留。轨迹停留是指在某个定位点上停留一段时间的行为,这个定位点可以是一个商场、一个旅游景点,甚至可以是一个公共交通站点。在现实生活中,我们经常会发现一些人在某个位置停留的时间比其他人长,这些人可能会在该位置进行某种活动,如购物、休息、聊天等。通过分析这些停留点,我们可以了解到人们的行为模式和消费习惯,帮助优化服务和产品。 然而,由于轨迹数据量大,数据维度高,数据之间的相关性复杂,传统的数据分析方法往往难以有效处理这些数据。在这种情况下,MeanShift算法成为了一种流行的数据聚类方法。该算法基于密度估计的方法,通过不断更新数据点的密度中心来实现数据聚类。在聚类过程中,该算法能够自适应地确定聚类中心的数量和位置,从而避免了手动调整聚类中心的繁琐过程。使用MeanShift算法进行分析。
2024-04-11 12:12:35 4KB
1
多配送中心选址问题可以描述为:某个地区内有若干个需求点,已知各个需求点的需求量,现欲在该区域内若干个配送中心备选点中选择一部分,建立配送中心,以满足该地区需求点的需求,并使得包括固定费用、运输费用以及存储费用在内的总费用最少。 为了简化问题,我们先做出如下假设: 1)仅在给定的配送中心备选点中选择一部分建立配送中心。 2)运输费用与运量成正比。 3)配送中心容量足够大,可以满足所有需求。 4)各需求点的需求量已知。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其冷却。加温时,固体内部粒子随温升变为无序状,内能增大;而冷却时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
2024-04-11 10:43:43 30KB matlab 模拟退火算法 中心选址问题
1
基于K-means算法的光伏曲线聚类研究 关键词:k-means 光伏聚类 聚类 参考文档:《基于改进 K-means 聚类的风光发电场景划分》仅部分参考 仿真平台:MATLAB平台 主要内容:代码主要做的是一个光伏曲线聚类的模型,采用的是较为基础的K-means算法,经过matlab求解后,代码可以直接输出光伏原始数据集、聚类后的数据集,各类曲线的数量以及各类曲线的概率,数据显示结果非常清晰,而且求解的效果更好,店主已经对代码进行了深入的加工和处理,出图效果非常好 标题:改进 K-means 算法在光伏曲线聚类研究中的应用 关键词:K-means 算法、光伏聚类、数据分析、MATLAB平台 参考文档:《基于改进 K-means 聚类的风光发电场景划分》(部分参考) 简介: 本研究聚焦于光伏曲线聚类的模型,采用了改进后的 K-means 算法,以提高聚类的准确性。我们选择了MATLAB平台作为仿真平台,并基于该平台进行实验和数据处理。通过运用改进后的算法,我们的代码能直接输出光伏原始数据集和聚类后的数据集,同时提供各类曲线的数量和概率。结果显示数据清晰可见,求解效果更佳
2024-04-11 09:40:42 1.26MB kmeans matlab 聚类
1
MATLAB代码:基于改进粒子群算法的含电动汽车参与园区综合能源优化调度 关键词:电动汽车 改进粒子群 综合能源 优化调度 园区 参考文档:《含电动汽车的区域综合能源系统优化调度研究》第3章:复现 仿真平台:MATLAB 主要内容:代码主要做的是一个含有系统能源运营商、分布式光伏用户、电动汽车充电代理商的园区综合能源系统,分析了三种市场交易主体的属性以及市场交易机制,建立了三方市场主体各自的综合能量管理优化策略,采用改进的粒子群算法对模型实现了求解,算例选取了某商务型办公园区的冬季典型场景。 此方法更加具有创新性,代码非常精品,注释保姆级
2024-04-10 18:40:48 276KB matlab
1