低等级多模式融合 Liu和Shen等人,这是“具有模态特定因素的高效低秩多模态融合”的存储库。 al。 ACL 2018。 依存关系 Python 2.7(现在实验性地支持Python 3.6+) torch=0.3.1 sklearn numpy 您可以通过python -m pip install -r requirements.txt安装库。 实验数据 实验的处理数据(CMU-MOSI,IEMOCAP,POM)可在此处下载: 要运行代码,您应该下载腌制的数据集并将其放在data目录中。 请注意,声学特征中可能存在NaN值,您可以将其替换为0。 训练模型 要运行代码进行实验(网格搜索),请使用脚本train_xxx.py 。 它们具有一些命令行参数,如下所示: `--run_id`: an user-specified unique ID to ensure that save
2021-11-05 09:54:51 1.69MB Python
1
Google page rank 算法经典论文,线性代数经典运用
2021-11-04 22:19:16 651KB google 算法
1
本资料主要是辅助learning to rank学习,目前比较靠谱的工具是RankLib,故使用它来学习learning to rank。文件夹包括RankLib-2.10.jar,测试数据集合MQ2008,测试文件格式说明文档,Tie-Yan Liu - Learning to Rank for Information Retrieval.pdf
2021-10-28 10:26:20 18.73MB rank ranklib
1
简单介绍 这里的代码主要是采用text-rank算法计算文本摘要,另外优势在于引入了词向量和权重倾斜 使得文章摘要提取效果得到了非常显著的提升。 注意 注意:由于github文件有大小限制,这里没有上传完整的词向量模型,所以无法直接运行,需要补充textrank4zh/word_model目录中的数据。 如果有需要,可在我的百度网盘下载,或者自己训练放入textrank4zh/word_model文件夹。 链接: https://pan.baidu.com/s/1o9RlASq 密码: 4kug 依赖 jieba >= 0.35 numpy >= 1.7.1 networkx >= 1.9.1 gensim 兼容性 适用于Python 2.7,已经测试过 原理 关于原理以及本代码实现的效果优化可见我上传的论文 《text-rank提取文章摘要与结果优化.doc》 阅读完对使用有很大
2021-10-27 18:31:34 79KB Python
1
Handbook of Robust Low-Rank and Sparse Matrix Decomposition
2021-10-12 11:09:36 12.9MB low Rank Sparse Matrix
1
spearman-rank.py 在 python 中快速而肮脏地实现 spearman 的等级。
2021-10-10 12:13:58 1KB Python
1
Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, the acquisition of image quality scores has several limitations: 1) scores are not precise, because subjects are usually uncertain about which score most precisely represents the perceptual quality of a given image; 2) subjective judgments of quality may be biased by image content; 3) the quality scales between different distortion categories are inconsistent, because images corrupted by different types of distortion are evaluated independently in subjective experiments; and 4) it is challenging to obtain a large scale database, or to extend existing databases, because of the inconvenience of collecting sufficient images associated with different kinds of distortion that have diverse levels of degradation, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as “the quality of image Ia is better than that of image Ib” for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso (MKLGL) to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves comparable performance
2021-10-08 17:29:11 1.54MB 图像质量评价
1
Python零基础10天进阶班【20flask搭建search engine(下)】
2021-09-28 09:04:26 50.39MB python
1
Python零基础10天进阶班【20flask搭建search engine(下)】
2021-09-28 09:04:23 50.01MB python
1
相对属性 用于图像分类和零镜头学习的视觉相对属性的Python实现 描述 此实现引用论文“ Relative Attributes, D. Parikh and K. Grauman, International Conference on Computer Vision (ICCV), 2011 。 作者给出的原始代码在matlab中。 此仓库包含用于从头开始使用牛顿优化来学习相对排名功能的python代码。 使用高斯混合模型的零射击学习也是在python中实现的。 实施细节 包含使用牛顿方法的rank svm的实现。 和 分别是用于零击学习的训练和测试文件。 此实现中使用了来自'PubFig'数据集的预提取要点特征。 要训​​练新的数据集, 模块和 可用于提取要点特征。 读取学习的排名功能,预处理的数据等,并将其保存在 目录。
1