多标签图像分类 使用集成深度CNN进行多标签图像分类的基准 代码说明 代码已使用PyTorch 0.4进行了测试。 通过取消注释相应的行以进行随机裁剪和混合,可以根据model1代码改编本文中出现的Model2(M2)和model3(M3)。 要使用以下命令运行脚本:python resnet101_model1fc.py 1 512 16(三个参数是试验索引,补丁大小,批处理大小) VOC2007的评估指标与NUS-WIDE和MS-COCO的评估指标略有不同,因为注释中存在“困难的示例”,在评估时会被忽略。 我们使用所有训练数据来训练模型和训练停止的固定标准。 数据 要运行该代码,您可能需要从其官方网站下载三个数据集的图像。 参考 王谦,贾宁,Toby P.Breckon,《使用集成深度CNN进行多标签图像分类的基线》,2019年IEEE国际图像处理会议,台北。 接触
1
使用CNN进行动作识别 在该项目中,对卷积神经网络(CNN)进行了训练,以使用Pytorch对图像和视频进行分类。 数据集 使用过的UCF101数据http://crcv.ucf.edu/data/UCF101.php但仅接受了10个班级(共101个班级)。 每个剪辑有3帧,每帧为64 * 64像素。 片段的标签位于q3_2_data.mat 。 trLb是训练剪辑的标签,而valLb是验证剪辑的标签。 首先对CNN进行训练以对每个图像进行分类。 然后,使用3D卷积训练CNN,将每个剪辑分类为视频而不是图像 Kaggle比赛 CNN对图像的动作识别-排名第10- http://www.kaggle.com/c/cse512springhw3 CNN对视频的动作识别-排名32- http://www.kaggle.com/c/cse512springhw3video
2021-12-10 15:26:52 55.29MB cnn torch python3 image-classification
1
Basic_CNNs_TensorFlow2 一些基本CNN的tensorflow2实现。 包括的网络: MobileNet_V1 MobileNet_V2 SE_ResNet_50,SE_ResNet_101,SE_ResNet_152,SE_ResNeXt_50,SE_ResNeXt_101 挤压网 ShuffleNetV2 RegNet 其他网络 对于AlexNet和VGG,请参见: : 对于InceptionV3,请参见: : 对于ResNet,请参阅: : 培养 要求: Python> = 3.6 Tensorflow> = 2.4.0 tensorfl
1
颜色分类leetcode 外行术语中的算法: 机器学习中的水果图像识别过程与婴儿开始识别水果的过程非常相似。 例如,父母试图让婴儿学习颜色。 他们向宝宝展示颜色,并用它告诉宝宝颜色的名称。 而且他们只是不做一次,他们不断提醒宝宝并每天练习颜色识别练习! 大脑中会发生一些化学物质,婴儿通过多次看到不同的颜色开始学习红色、黄色等颜色。 形状类似,宝宝开始认识圆形、矩形、三角形等。 然后父母不断提醒宝宝,如果它又红又圆,那就是“苹果”。 如果它是圆形的和橙色的,它就是一个“橙色”等等。 也许作为人类,宝宝以后也会通过嗅觉和味觉来识别水果。 所以,和父母一样,我们在机器学习模型(你可以考虑婴儿的大脑)中输入各种图像和一些数学方程(将其视为大脑中的那些化学React),这些方程识别不同的特征(婴儿会考虑的因素)识别水果,如颜色、大小、形状、气味、味道)。 通过不同的组合,宝宝最终会对水果进行分类。 因此,这里正在进行两项任务来识别图像的果实: 特征提取 --> 决定识别水果的因素 分类 --> 查看特征的组合并检查它与哪个水果最相似。 传统上,只有一种称为卷积神经网络 (CNN) 的算法用于与
2021-12-06 19:35:40 147KB 系统开源
1
PyTorch中用于图像分类的深度主动学习工具包 这是用编写的用于图像分类的深度主动学习的代码库。 我想强调的是,该工具包只是最初由Prateek Munjal等人通过电子邮件与我共享的工具包的轻量级衍生产品。 论文“使用神经网络实现鲁棒和可再现的主动学习”的作者,请。 介绍 该存储库的目标是为深度主动学习提供一个简单而灵活的代码库。 它旨在支持快速实施和评估研究思路。 我们还提供了大量基准结果(即将推出)。 该代码库当前仅支持单机单gpu培训。 我们将很快将其扩展到由PyTorch分布式软件包提供支持的单机多GPU培训。 使用工具箱 有关简要的安装说明和基本用法示例,请参见 。 支持的主动学习方法 不确定性抽样 最不信任 最低保证金 最大熵 深度贝叶斯主动学习(DBAL)[1] 贝叶斯主动学习的分歧(BALD)[1] 多样性抽样 核心组(贪婪)[2] 变式对抗主动学习(VAAL)
1
图分类实验 描述 它能做什么 怎么跑 一,安装依赖 # clone project git clone https://github.com/YourGithubName/your-repo-name cd your-repo-name # optionally create conda environment conda update conda conda env create -f conda_env.yaml -n your_env_name conda activate your_env_name # install requirements pip install -r requirements.txt pip install hydra-core --upgrade --pre 接下来,按照以下说明安装pytorch geometric: 现在,您可以使用默认配置训练模
1
(英语) 这个demo展示了如何实现卷积神经网络(CNN)对多输入的图像分类。例如,一个名为MNIST的手写数字数据集被分为上半部分和下半部分,如下图所示,上下半部分部分被送入多输入CNN。 (日本人) 这是一个卷积神经网络的演示,可以输入两种类型的图像。 有两个输入层,例如,输入层A用于输入动物面部图像,输入层B用于输入动物爪子图像,以此类推。 从 2019b 版本开始,一种称为自定义循环的方法成为可能,允许对深度学习进行更详细的自定义。为了方便尝试,手写数字的上半部分和下半部分分别从不同的输入层输入,将卷积等后得到的特征组合起来,用全连接层等进一步推进计算。 .如果您能告诉我您对此示例是否有任何更合适的数据或问题,我将不胜感激。还有一些地方还欠缺制作,希望以后继续更新。
2021-11-23 11:46:19 3.42MB matlab
1
视觉识别的瓶颈变压器 实验 模型 参数(M) 累积(%) ResNet50基线() 23.5百万 93.62 BoTNet-50 1880万 95.11% BoTNet-S1-50 1880万 95.67% 僵尸网络-S1-59 2750万 95.98% BoTNet-S1-77 4490万 ip 概括 用法(示例) 模型 from model import Model model = ResNet50 ( num_classes = 1000 , resolution = ( 224 , 224 )) x = torch . randn ([ 2 , 3 , 224 , 224 ]) print ( model ( x ). size ()) 模块 from model import MHSA resolution = 14 mhsa = MHSA ( plan
1
转移学习 使用VGGNet对花朵图像进行分类。
1
- 笔记这是将该应用程序投入生产的示例,您应该使用celery或aws lambda。
2021-11-16 17:23:32 15.13MB machine-learning django keras image-classification
1