内容概要:本文深入探讨了自动驾驶领域的Lattice规划算法,重点讲解了轨迹采样的方法、轨迹评估的标准以及碰撞检测的技术细节。文中不仅提供了详细的理论解释,还给出了Matlab和C++两种不同编程语言的具体代码实现,便于读者理解和实践。此外,文章还介绍了如何利用Qt5.15进行可视化操作,并新增了优化绘图、轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适用人群:对自动驾驶技术感兴趣的科研人员、工程师以及有一定编程基础的学习者。 使用场景及目标:适用于研究和开发自动驾驶系统的人群,旨在帮助他们掌握Lattice规划算法的核心原理和技术实现,提高实际项目中的应用能力。 其他说明:文章提供的代码可以在Visual Studio 2019环境下编译运行,支持通过MAT文件加载不同的测试场景,有助于快速验证算法的有效性并进行改进。
2026-01-25 17:03:35 844KB
1
FOC电机控制中的SVPWM仿真模型,使用Matlab的simulink工具箱
2026-01-25 12:16:28 199KB 电机控制 SVPWM Matlab
1
内容概要:本文详细介绍了基于变步长扰动观察法的光伏发电及其并网逆变仿真模型的研究。文章从光伏发电技术的基本原理入手,逐步讲解了变步长扰动观察法的应用,以及如何利用MATLAB搭建仿真模型的具体步骤。通过信号处理工具箱和图形绘制工具箱的帮助,完成了光伏电池输出特性的模拟、并网逆变器电路模型的构建,并进行了仿真结果的分析,确保模型的准确性、可靠性和有效性。 适合人群:从事电力电子、新能源发电领域的研究人员和技术人员,尤其是对光伏发电系统有浓厚兴趣的专业人士。 使用场景及目标:适用于希望深入了解光伏发电系统动态行为的研究人员,旨在通过MATLAB仿真模型的搭建,提高对光伏发电及其并网逆变系统的认识和理解。 其他说明:文中提供了具体的实现步骤和示例代码,有助于读者在实践中进行模型的开发和优化。
2026-01-24 19:56:59 304KB
1
双向DC DC蓄电池充放电储能matlab simulink仿真模型,采用双闭环控制,充放电电流和电压均可控,电流为负则充电,电流为正则放电,可以控制电流实现充放电。 (1)可通过电流环控制电池充放电电流(电流闭环) (2)可通过电压环控制电池两端充放电电压(电压闭环) 双向DC DC蓄电池充放电储能系统的仿真模型研究,是现代电子科技领域中的一个重要课题。该系统能够实现能量的双向转换,即既能将电能存储为化学能,又能将化学能转换回电能,广泛应用于电动汽车、可再生能源存储以及电网调节等多种场合。随着对能源高效利用和可持续发展的需求不断增长,对双向DC DC蓄电池充放电储能系统的控制与仿真研究变得尤为重要。 在本仿真模型中,采用了双闭环控制策略,这是一种先进的控制方法,通过内环控制电流和外环控制电压,实现了对充放电过程的精确控制。具体来说,电流闭环控制负责维持电池充放电电流的稳定,而电压闭环控制则保证了电池两端电压的恒定。通过这种结构,可以根据需要灵活地调整充放电电流,以实现对储能系统的优化管理。 在充放电过程中,根据电流的方向可以判断出电池是在充电还是在放电状态。当电流为负值时,表示电池正在接受电能,即充电状态;反之,当电流为正值时,则意味着电池正在释放电能,即放电状态。通过精确控制电流的大小和方向,可以有效地管理电池的能量存储和输出,保证电池在最佳状态下工作,延长其使用寿命。 仿真模型的开发涉及到多个技术领域,包括电力电子技术、控制系统理论、储能材料学以及计算机科学等。在MATLAB/Simulink环境下进行模型搭建和仿真实验,可以直观地观察到电池充放电过程中的各种动态行为,这对于验证控制算法的性能,优化系统参数,提高系统稳定性和可靠性都具有重要意义。 此外,通过查阅相关文献和分析仿真结果,研究人员能够深入理解双向DC DC蓄电池充放电储能系统的运行机制,为实际电池管理技术的开发和应用提供理论支持和技术指导。例如,通过仿真模型的分析,可以对电池充放电过程中的能量损失进行评估,优化电池组的充放电策略,减少能量损耗,提升系统的整体效率。 双向DC DC蓄电池充放电储能系统及其仿真模型的研究,不仅能够为电池管理系统的设计和优化提供科学依据,而且对于推动储能技术的发展、实现能源的高效利用具有重要的现实意义。随着相关技术的不断进步,未来双向DC DC蓄电池充放电储能系统将在更多领域得到广泛应用,为人类社会的可持续发展做出更大的贡献。
2026-01-24 19:29:26 276KB 数据结构
1
双向全桥LLC谐振变器是一种电力电子设备,它的主要功能是通过电磁感应原理进行能量的转换与传递。在电力系统、电源管理、电动车充电站等领域有着重要的应用价值。全桥LLC谐振变器相比于传统变压器,具有更高的效率,因为它能够实现软开关操作,减少开关损耗,并且能在较宽的负载范围内保持高效率的工作。 隔离型双向变器则是在全桥LLC谐振变器的基础上,增加了一定的隔离措施,以确保安全性和电能质量。隔离型变器能够在输入和输出端之间提供电气隔离,这对于符合安全标准、防止电气故障传播等都非常重要。 正向LLC、反向LC以及CLLC则是不同类型的拓扑结构。LLC谐振变换器是由电感(L)、电容(C)组成的谐振网络构成的,正向LLC指的是在正向工作模式下使用LLC谐振变换器;而反向LC则是指变换器在反向工作模式下的配置,CLLC则是一种结合了电感和电容特性的复合拓扑结构。每种拓扑结构都有其特定的工作原理和应用场景,选择合适的拓扑结构对于实现变频控制和闭环控制至关重要。 变频控制和闭环控制是双向全桥LLC谐振变器实现精确能量转换的核心技术。变频控制指的是通过改变工作频率来调整输出电压和电流,从而控制能量的传输。闭环控制则是在变频控制的基础上,结合反馈信号,形成闭环系统,以实现在不同工作条件下稳定输出的要求。 PLECS和MATLAB Simulink是用于电力系统仿真和分析的两款强大的软件工具。PLECS支持快速的电力电子系统仿真,尤其适合进行复杂电力电子拓扑的详细仿真。MATLAB Simulink则是一个通用的仿真环境,它能通过各种模块化组件实现动态系统建模、仿真和分析。将两者结合使用,可以在模型中实现复杂的控制策略,并进行精确的系统仿真。 在文档方面,提供的文件列表包含了多种格式的资料。包括“.doc”格式的文档,这可能包含了详细的理论分析、设计原理和实验数据;“.html”格式的网页文件,可能提供了有关双向全桥谐振变换器仿真研究的引言和背景;“.txt”格式的文本文件,其中可能包含了对背景技术的引出和对科技发展的探讨;图片文件“.jpg”则可能包含了相关的图表或模型设计图,用以辅助理解和分析。 从中可以看出,文档内容涵盖了双向全桥LLC谐振变器的设计、仿真、控制策略以及实现技术等多个方面的知识点。通过深入分析这些文件,可以全面了解和掌握这一领域最新的研究进展和应用实例。对于从事电力电子、控制工程等相关领域的工程师和研究人员而言,这些文件是宝贵的参考资料。
2026-01-24 10:37:14 317KB safari
1
基于S-S与LCC-S结构的WPT无线电能传输电路模型:输出电压闭环PI控制及结构参数设计说明计算——Matlab Simulink环境,基于S-S或LCC-S结构的WPT无线电能传输电路模型,采用输出电压闭环PI控制。 另附带电路主结构参数设计说明和计算。 运行环境为matlab simulink ,基于S-S或LCC-S结构; WPT无线电能传输电路模型; 输出电压闭环PI控制; 电路主结构参数设计; Matlab Simulink运行环境,基于S-S/LCC-S结构的WPT电路模型:主参数设计与PI控制闭环研究
2026-01-23 17:36:58 167KB edge
1
地震叠前三参数反演算法的实践:纵波速度、横波速度与密度参数反演及其应用研究与对比实验——附Matlab源代码及详细注释。,"深度解析:地震叠前三参数反演算法实现与对比实验,纵波横波密度参数反演及Matlab代码详解",实现地震叠前三参数反演算法 纵波速度 横波速度 密度参数反演 应用研究及对比实验 matlab源代码 代码有详细注释,完美运行 ,地震叠前三参数反演; 纵波速度反演; 横波速度反演; 密度参数反演; 应用研究对比实验; MATLAB源代码; 代码注释。,"地震叠前三参数反演算法实现与对比实验研究(MATLAB详解版)"
2026-01-22 21:35:26 233KB sass
1
内容概要:本文研究了风电、光伏与抽水蓄能电站的互补调度运行,通过Matlab代码实现多能源系统的协调优化。重点在于利用抽水蓄能电站的储能特性平抑风电和光伏发电的波动性和不确定性,提高新能源消纳能力和系统运行的稳定性。文中构建了综合考虑风光出力预测、负荷需求、电价机制及储能运行约束的优化调度模型,并采用智能优化算法求解,实现了不同时间尺度下的经济调度与能量管理。同时,研究还探讨了多种场景下的调度策略对比,验证了互补系统在降低运行成本、减少弃风弃光和提升供电可靠性方面的优势。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源并网、储能调度等相关领域的工程技术人员。; 使用场景及目标:①应用于含高比例可再生能源的电力系统优化调度研究;②为风光储一体化项目提供调度策略设计与仿真验证支持;③作为教学案例帮助理解多能源互补协调控制原理与建模方法。; 阅读建议:建议读者结合提供的Matlab代码深入理解模型构建与算法实现细节,可自行调整参数或扩展模型结构以适应不同应用场景,同时推荐参考文中涉及的优化算法与电力系统运行规则以增强实际应用能力。
2026-01-22 21:14:29 220KB
1
本文介绍了多目标向光生长算法(MOPGA)在多无人机协同路径规划中的应用。MOPGA是基于植物细胞响应阳光生长模式提出的元启发算法,适用于处理多目标优化问题。文章详细阐述了多目标无人机路径规划模型,包括路径成本、约束成本(威胁成本、飞行高度成本、平滑成本)的计算方法,并提供了完整的MATLAB代码实现。该算法能够有效解决多起点多终点的无人机路径规划问题,且起始点、无人机数量和障碍物均可自定义,具有较高的实用性和灵活性。 多目标向光生长算法(MOPGA)是一种新颖的元启发式算法,它的提出受到了植物细胞响应阳光生长模式的启发。MOPGA算法在多无人机协同路径规划中的应用展现了其解决复杂多目标优化问题的强大能力。在这一应用中,研究者们关注于路径规划模型的构建,该模型涉及到多个成本因素的计算,包括路径成本、威胁成本、飞行高度成本和平滑成本等。 通过构建这样一个模型,MOPGA算法能够针对具有多个起点和终点的复杂场景,规划出符合安全、高效和经济要求的路径。研究者们通过MATLAB编写的源代码实现了这一算法,并提供了一个灵活的框架,允许用户根据实际情况自定义起始点、无人机数量和障碍物等参数。 MOPGA算法之所以在多无人机路径规划领域具有实用性,是因为它不仅可以处理复杂的多目标问题,还能在存在诸多约束的环境中找到最优或近似最优的解。算法模拟了植物生长过程中细胞对阳光方向的反应,通过迭代过程,逐渐引导解的搜索方向,从而找到满足多个目标和约束条件的路径方案。 相较于传统的优化算法,MOPGA算法在计算效率和解的质量上表现出较大的优势。它的元启发特性使得算法能够跳出局部最优,寻求全局最优解。同时,MOPGA在并行计算方面也显示出良好的潜力,这意味着算法能够在多核处理器上更加快速地进行大规模问题的求解。 MOPGA算法在无人机路径规划方面的应用,展示了它在实际问题中的广泛适用性。无人机在许多领域都有着重要的应用价值,例如农业监测、灾害评估、军事侦察和物流运输等。在这些应用中,高效的路径规划不仅可以提高无人机任务的执行效率,还能提高安全性,降低运行成本。 MOPGA算法为多无人机协同路径规划提供了一个创新和有效的解决方案,具有重要的研究价值和应用前景。随着无人机技术的进一步发展,该算法的应用将更加广泛,其理论和实践意义也将更加突出。
2026-01-22 20:38:38 925KB 多目标优化 MATLAB
1
两电平三相并网逆变器模型预测控制MPC:单矢量、双矢量与三矢量控制及功率器件损耗模型Matlab Simulink仿真实现,两电平三相并网逆变器模型预测控制MPC 包括单矢量、双矢量、三矢量+功率器件损耗模型 Matlab simulink仿真(2018a及以上版本) ,关键词:两电平三相并网逆变器;模型预测控制(MPC);单矢量控制;双矢量控制;三矢量控制;功率器件损耗模型;Matlab;Simulink仿真;2018a及以上版本。,"基于MPC的两电平三相并网逆变器模型研究:单双三矢量与功率损耗仿真"
2026-01-22 11:27:01 71KB
1