在IT领域,动态规划是一种强大的算法,用于解决最优化问题,尤其在面对具有重叠子问题和最优子结构特征的问题时。在这个特定的项目中,我们关注的是如何使用Python编程语言来解决“武器目标分配问题”。这是一个典型的组合优化问题,其中涉及到在有限资源下将武器有效地分配给多个目标,以最大化某种效益或最小化损失。 动态规划的基本思想是将复杂问题分解为更小的子问题,然后逐个解决这些子问题,最终组合出原问题的解。这种策略的关键在于存储和重用子问题的解决方案,避免了重复计算,提高了效率。 在武器目标分配问题中,我们可以设定一个二维数组或者矩阵,其中行代表武器,列代表目标,每个元素表示使用某一武器打击某一目标的效益或成本。动态规划的过程通常包括以下几个步骤: 1. **定义状态**:确定状态变量,如在这个问题中,状态可能是已经分配的武器和目标的组合。 2. **状态转移方程**:建立状态之间的转移关系,即如何从一个状态过渡到另一个状态。这通常涉及到选择当前状态下最佳的决策。 3. **初始化边界条件**:设定起始状态的值,通常是问题的边界条件。 4. **填充值**:自底向上地填充状态表格,每一行或每一列代表一个武器或目标的决策过程。 5. **求解最优解**:通过回溯填充的表格,找到最优的武器与目标分配。 在Python中,我们可以使用二维列表或其他数据结构来实现这个表格,并利用循环结构进行填充。例如,可以使用两个嵌套的for循环遍历所有可能的武器目标组合,根据状态转移方程更新每个单元格的值。 此外,为了提高代码的可读性和复用性,可以封装这些步骤到一个函数中,可能还需要考虑如何处理特殊情况,如资源不足或目标被多个武器同时攻击的情况。 在提供的"Weapon-Target-Allocation-code"文件中,应该包含了具体的Python实现代码,你可以通过阅读和理解这段代码来深入学习这个问题的动态规划解决方案。这将帮助你掌握如何将理论知识应用于实际问题,并提升你的编程和算法设计能力。 动态规划算法在解决武器目标分配问题时,能够有效地找到最优解,其关键在于巧妙地构建状态和状态转移方程。通过Python实现,我们可以将复杂的数学模型转化为可执行的代码,这是计算机科学与工程领域中的一个重要技能。
2024-10-22 10:50:16 2.05MB python 动态规划
1
在本压缩包“02第2章 数据处理与可视化(Python 程序及数据).zip”中,主要涵盖了Python编程语言在数据处理与可视化方面的应用。Python是一种强大的、广泛使用的编程语言,尤其在数据分析领域,它凭借其简洁的语法和丰富的库资源,成为众多数据科学家和工程师的首选工具。 数据处理是数据分析的基础,Python提供了多个库来支持这一过程。其中,Pandas是核心的数据处理库,它的DataFrame对象能够高效地存储和操作表格型数据。Pandas允许用户进行数据清洗、合并、重塑、切片和切块等多种操作。例如,你可以使用`read_csv()`函数读取CSV格式的数据,`dropna()`去除缺失值,`groupby()`进行分组聚合,以及`merge()`和`join()`实现数据集的合并。 NumPy是Python中的科学计算库,提供了一维数组对象ndarray和多维数组操作。它支持大量的维度数组和矩阵运算,以及高级数学函数。在数据预处理时,NumPy的`numpy.random`模块可以用于生成随机数据,`numpy.linalg`模块则包含线性代数计算,如求解线性方程组和计算矩阵特征值。 Matplotlib是Python中最基础的数据可视化库,可以绘制出各种静态、动态、交互式的图表。使用`pyplot`子库,可以创建简单的线图、散点图、柱状图等。例如,`plt.plot()`用于绘制折线图,`plt.scatter()`绘制散点图,`plt.bar()`绘制柱状图。此外,Matplotlib还支持自定义轴标签、图例、颜色和线条样式,使得图表更加专业且易于理解。 Seaborn是基于Matplotlib的高级可视化库,提供了更高级别的接口,使数据可视化更为简洁和美观。它能方便地创建复杂统计图形,如热力图、联合分布图、箱线图等。Seaborn与Pandas紧密结合,可以直接操作DataFrame,简化了数据和视觉元素之间的映射。 除了以上库,还有其他一些库如Plotly和Bokeh,它们专注于创建交互式和高性能的Web图形。Plotly允许用户创建动态图表,并可以导出为HTML文件或嵌入到网页中。Bokeh则提供了更广泛的交互功能,适合大数据量的可视化。 在Python中进行数据处理和可视化,通常遵循以下步骤: 1. 导入所需库:如`import pandas as pd`, `import numpy as np`, `import matplotlib.pyplot as plt`, `import seaborn as sns`。 2. 加载数据:使用Pandas的`pd.read_csv()`或其他类似函数读取数据。 3. 数据清洗:处理缺失值、异常值、重复值,以及进行必要的数据转换。 4. 数据探索:利用描述性统计和简单的可视化(如直方图、散点图)了解数据特性。 5. 数据处理:使用Pandas进行数据分组、聚合、排序等操作。 6. 数据分析:运用NumPy进行数学计算,如计算统计量、拟合模型等。 7. 数据可视化:使用Matplotlib和Seaborn创建直观的图表,解释分析结果。 8. 交互式可视化:如果需要,使用Plotly或Bokeh创建交互式图表,增加用户参与度。 这些知识点构成了Python在数据处理与可视化领域的基础,对于理解和掌握数据分析流程至关重要。通过实践这些库和方法,不仅可以提升数据分析能力,还能增强数据讲故事的能力,使数据结果更具说服力。
2024-10-20 19:49:28 8MB python
1
Linux 与 Python 编程复习大纲(软件20级) 一、 Linux 部分 1.1 Linux 系统结构 * Linux 内核(Kernel):系统的心脏,实现操作系统的基本功能 * Linux Shell:系统的用户界面,提供了用户与内核进行交互操作的一种接口 * Linux 应用程序:包括文本编辑器、编程语言、X Window、办公套件、Internet 工具、数据库等 * Linux 文件系统:文件系统是文件存放在磁盘等存储设备上的组织方法。通常是按照目录层次的方式进行组织。系统以 / 为根目录 1.2 Shell 的作用 * Shell 是系统的用户界面,提供了用户与内核进行交互操作的一种接口 * 接受用户输入的命令并把它送入内核去执行 * 起着用户与系统之间进行交互的作用 1.3 Linux 用户类型及其用户主目录 * 普通用户:拥有自己的家目录,通常在 /home 目录下 * 超级用户(root):拥有最高权限,能够访问系统中的所有文件和目录 1.4 shell 提示符 * [用户登录名@主机名 当前目录]#、$ 1.5 输入输出重定向及用户文件描述符 * 输入输出重定向:将命令的输出重定向到文件或设备 * 文件描述符:文件在操作系统中的标识符 1.6 常见的 Linux 文件类型及其对应的描述字符 * 普通文件(-) * 目录文件(d) * 链接文件(l) * 块设备文件(b) * 字符设备文件(c) 1.7 Linux 的文件目录结构 * 根目录(/) * 家目录(~/) * 临时文件目录(/tmp) 1.8 基本操作命令 * ls -al:显示文件和目录的详细信息 * cat:显示文件的内容 * more、less:分页显示文件的内容 * cp、mv、rm -r:复制、移动、删除文件或目录 * mkdir、rmdir:创建、删除目录 * cd、pwd:改变当前目录、显示当前目录 * kill:结束进程 1.9 链接命令 ln -s * 创建符号链接文件 * 将源文件链接到目标文件 1.10 压缩命令 tar * 创建、解压缩文件 1.11 vi 编辑器的三种基本工作模式 * 命令模式 * 插入模式 * 底行模式 1.12 使用挂载、卸载命令 * mount:挂载文件系统 * umount:卸载文件系统 * fdisk -l:显示磁盘的分区信息 1.13 Linux 所支持的文件系统类型 * ext2、ext3、ext4 * FAT16、FAT32 * NTFS * ISO9660 1.14 Linux 系统设备的名称 * 硬盘设备:/dev/sda、/dev/hda * 软盘设备:/dev/fd0 * 光驱设备:/dev/cdrom 1.15 用户帐号信息的配置文件 * /etc/passwd:用户信息文件 * /etc/shadow:用户密码文件 1.16 用户管理命令 * adduser:添加新用户 * passwd:修改用户密码 * userdel:删除用户 * su:切换用户身份 1.17 Linux 系统的文件权限 * 读权限 (r) * 写权限 (w) * 执行权限 (x) 1.18 Linux 系统进程的类型 * 前台进程 * 后台进程 * 守护进程 二、 Python 部分 2.1 Python 交互式、文件方式、集成开发环境、导入模块的方式 * 交互式:使用 Python 解释器进行交互式编程 * 文件方式:将 Python 代码写入文件中 * 集成开发环境:使用 IDE 进行 Python 开发 * 导入模块:使用 import 语句导入模块 2.2 Python 输入与输出、赋值语句、数据类型及运算 * 输入:使用 input() 函数 * 输出:使用 print() 函数 * 赋值语句:使用 = 号进行赋值 * 数据类型:整数、浮点数、字符串、列表、字典等 * 运算:使用运算符进行算术、比较、逻辑等运算 2.3 逻辑运算的逻辑短路、惰性求值的特点 * 逻辑短路:在逻辑运算中,如果遇到 False 则不再继续执行 * 惰性求值:在逻辑运算中,只有当结果可能为 False 时才继续执行 2.4 内置函数 * max():返回最大值 * min():返回最小值 * sum():返回总和 * len():返回长度 * map():将函数应用于可迭代对象 * enumerate():返回枚举对象 * zip():返回迭代对象 * range():返回范围对象 * sorted():返回排序后的列表 2.5 列表、元组、字典、集合特点及相关操作 * 列表:可变、可索引、可切片 * 元组:不可变、可索引、可切片 * 字典:可变、可索引、可迭代 * 集合:不可变、不可索引、可迭代 2.6 切片操作、列表推导式、生成器表达式及可迭代函数的特点 * 切片操作:提取列表的一部分 * 列表推导式:使用列表推导式创建列表 * 生成器表达式:使用生成器表达式创建生成器 * 可迭代函数:使用迭代器函数创建迭代器 2.7 选择语句、循环结构(含 else 语句) * 选择语句:使用 if、elif、else 语句进行选择 * 循环结构:使用 for、while 语句进行循环 2.8 函数的定义及调用、参数传递 * 函数定义:使用 def 语句定义函数 * 函数调用:使用函数名和参数列表调用函数 * 参数传递:使用位置参数、关键参数、默认值参数、可变长度参数、参数传递序列解包 2.9 类的定义、数据成员、成员方法、构造函数 * 类定义:使用 class 语句定义类 * 数据成员:使用 self 变量访问实例数据 * 成员方法:使用实例方法、类方法、静态方法 * 构造函数:使用 __init__ 方法初始化对象 2.10 类的继承下的语法、属性、方法、构造函数 * 继承:使用继承语句继承父类 * 属性:使用父类的属性 * 方法:使用父类的方法 * 构造函数:使用父类的构造函数 2.11 字符串常用方法 * format:使用格式字符串 * find:查找字符串 * split:分割字符串 * join:连接字符串 * replace:替换字符串 * strip:去除字符串的空白字符 * center:居中字符串 2.12 编程题 * 编程题目:使用 Python 语言编写程序 * 评分标准:根据程序的正确性和效率进行评分
2024-10-19 22:19:51 2.22MB 期末考试 TYUT 太原理工大学 Linux
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:17:00 8.06MB python 人工智能 ai
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
在本项目中,"kaggle泰坦尼克号python的所有实验代码以及实验报告"是一个针对著名数据科学竞赛——Kaggle的泰坦尼克号生存预测挑战的完整学习资源。这个项目包含了使用Python编程语言进行数据分析、特征工程和机器学习模型构建的全过程。以下是基于这个主题的详细知识点讲解: 1. **Python基础**:Python是数据科学中广泛使用的编程语言,它的语法简洁,易于学习。在泰坦尼克号项目中,Python用于读取、清洗、处理和分析数据。 2. **Pandas库**:Pandas是Python的一个重要数据处理库,用于数据清洗、整理和分析。在这里,它被用来加载CSV数据,进行数据类型转换,缺失值处理,以及数据子集的筛选。 3. **NumPy**:NumPy提供了高效的多维数组操作,对于计算和统计分析非常有用。在泰坦尼克号项目中,可能用于计算统计量,如平均值、中位数等。 4. **Matplotlib和Seaborn**:这两个库用于数据可视化,帮助理解数据分布和模型结果。例如,它们可以用于绘制乘客年龄、性别、票价等特征的直方图,以及生存率与这些特征的关系图。 5. **Scikit-learn**:这是Python中的机器学习库,包含多种监督和无监督学习算法。在这个项目中,可能会用到Logistic Regression、Decision Trees、Random Forest、Support Vector Machines等算法来预测乘客的生存情况。 6. **特征工程**:这是数据分析的关键步骤,包括创建新特征(如家庭成员数量、票价等级等)、编码类别变量(如性别、船舱等级)以及处理缺失值。 7. **模型训练与评估**:使用训练集对模型进行拟合,然后使用验证集或交叉验证来评估模型性能。常见的评估指标有准确率、精确率、召回率、F1分数和AUC-ROC曲线。 8. **模型调优**:通过调整模型参数(如决策树的深度、随机森林的树的数量)来提高模型的预测能力。此外,也可能使用网格搜索、随机搜索等方法进行参数优化。 9. **Ensemble Learning**:可能采用集成学习方法,如Bagging、Boosting,将多个模型的预测结果组合起来,以提高最终预测的准确性。 10. **实验报告**:实验报告会详细记录整个分析过程,包括数据介绍、问题定义、方法选择、模型构建、结果解释和未来改进的方向。它可以帮助读者理解分析思路,评估研究的可靠性和有效性。 通过这个项目,初学者不仅可以学习到数据科学的基本流程,还能深入理解如何在实际问题中应用Python和机器学习技术。同时,这也是一个提升数据可视化、问题解决能力和项目管理技巧的好机会。
2024-10-19 17:42:38 2.35MB python
1
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程 项目运行 环境配置: Pychram社区版+ python3.7.7 + Mysql5.7 + HBuilderX+list pip+Navicat11+Django+nodejs。 项目技术: django + python+ Vue 等等组成,B/S模式 +pychram管理等等。 环境需要 1.运行环境:最好是python3.7.7,我们在这个版本上开发的。其他版本理论上也可以。 2.pycharm环境:pycharm都可以。推荐pycharm社区版; 3.mysql环境:建议是用5.7版本均可 4.硬件环境:windows 7/8/10 1G内存以上;或者 Mac OS; 6.Navcat11:这个版本不限10/11/14/15都可以。; Python-Django毕设帮助,指导,本源码(见文末),调试部署
2024-10-17 20:20:24 2.22MB django Python 二手车交易平台 论文
1
通过逆向强化学习推断足球进攻与防守明智决策背后的意图 论文代码:运用逆向强化学习推断足球进攻/防守游戏明智决策背后的意图 该存储库包含从wyscout足球日志中生成状态和动作的批处理环境,其中包含在整个七场比赛(西甲,意甲)整个赛季的所有比赛中发生的所有时空事件(传球,射门,犯规等) ,德甲联赛,英超联赛,联赛1强,FIFA世界杯2018年,UEFA欧洲杯2016年)。 数据集在线提供: : 应用GIRL算法,并根据他们的进攻或防守意愿将团队专家聚类。
2024-10-17 18:49:20 22.97MB Python
1
资源分类:Python库 所属语言:Python 资源全名:PyMuPDF-1.18.14-cp37-cp37m-macosx_10_9_x86_64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
2024-10-17 14:05:08 5.31MB python 开发语言 Python库
1
python 资源内容: 1、垃圾填埋场地选址(jupyter notebook 实现)。中文描述Python代码实现的过程。 2、Landfill_site_selection_gdal-main。Python实现代码(直接运行)。
2024-10-16 18:03:52 13.16MB python
1