FPGA——reg2reg路径的时序分析 FPGA(Field-Programmable Gate Array,现场可编程门阵列)是一种基于门阵列的可编程逻辑器件,广泛应用于数字电路设计和开发中。reg2reg路径的时序分析是FPGA设计中一个非常重要的方面,因为它直接影响着系统的时序性能和可靠性。 在reg2reg路径的时序分析中,我们需要了解数据路径(data path)和时钟路径(clock path)的概念。数据路径是指数据在整个传输起点到传输终点所走过的路径,而时钟路径则是指时钟从源端到达各个寄存器输入端的路径。 在时序分析中,我们需要考虑两种路径:数据到达路径(data arrival path)和数据所需路径(data required path)。数据到达路径是指数据在两个寄存器间传输的实际所需时间,而数据所需路径则是指为了确保稳定、可靠且有效的传输,数据在两个寄存器间传输的理论所需时间。 在reg2reg路径的时序分析中,我们需要了解setup relationship和hold relationship及其与launch edge和latch edge之间的关系。Setup relationship是指在正常情况下,两个相邻的寄存器,后一级寄存器每次锁存的数据应该是前一级寄存器上一个时钟周期锁存过的数据。Hold relationship则是指保持时间,即后一级寄存器的保持时间很可能遭到上一级寄存器同一个时钟周期所传输数据的“侵犯”。 在时序分析中,我们可以得到比较理想的reg2reg传输的建立时间和保持时间余量(slack)计算公式: 建立时间余量的计算公式:Setup time slack = Data Required Time – Data Arrival Time 保持时间余量的计算公式:Hold time slack = Data Arrival Time – Data Required Time 这些公式的应用可以帮助我们更好地理解和优化FPGA设计的时序性能,从而提高系统的可靠性和稳定性。 在实际应用中,reg2reg路径的时序分析可以应用于各种数字电路设计和开发,例如数字信号处理、数字控制系统、计算机网络等领域。同时,这种分析方法也可以应用于其他类型的数字电路设计和开发中,例如ASIC设计、SoC设计等。 reg2reg路径的时序分析是FPGA设计中一个非常重要的方面,通过了解数据路径、时钟路径、setup relationship和hold relationship等概念,我们可以更好地理解和优化FPGA设计的时序性能,从而提高系统的可靠性和稳定性。
2025-07-04 15:11:54 48KB FPGA reg2reg 时序分析 clock
1
内容概要:本文介绍了基于黑翅鸢算法(BKA)优化的卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和注意力机制(Attention)相结合的多变量时序预测模型。该模型已在SCI权威期刊《Artificial Intelligence Review》上发表。文中详细描述了模型的构建过程,包括各组件的作用和优化方法,并提供了可直接运行的Matlab代码。代码支持多种评价指标(如R2、MAE、MSE、RMSE等),并附有详细的中文注释,适合初学者使用。此外,还讨论了模型的应用场景和扩展可能性,如更换不同的优化算法或其他类型的神经网络。 适合人群:具备基本编程基础的研究人员和学生,尤其是对时序数据分析感兴趣的初学者。 使用场景及目标:① 处理具有时间依赖性的多变量时序数据;② 使用Matlab进行快速实验和验证;③ 学习和理解深度学习模型的构建和优化方法。 其他说明:该模型不仅可用于预测任务,还可以通过简单修改应用于分类和回归任务。代码提供完整的测试数据集,用户只需替换自己的数据集即可运行。
2025-06-23 20:45:49 1.39MB
1
"基于集成学习Adaboost-SCN与随机配置网络的强回归器在时序预测中的实践:效果显著、注释详尽、快速上手",集成学习adaboost-scn,集成随机配置网络的强回归器。 回归,时序预测。 效果显著,注释详细。 替数据就可适用于自己的任务 ,集成学习; adaboost-scn; 随机配置网络; 强回归器; 回归; 时序预测; 效果显著; 注释详细; 数据替换。,"集成学习强回归器:Adaboost-SCN与随机配置网络时序预测,注释详尽效果显著" 在当今的数据分析领域中,时序预测作为一种重要的数据分析方法,对于金融、气象、能源等领域都具有极为重要的应用价值。时序预测的目标是从历史时间序列数据中寻找规律,进而预测未来的数据趋势。随着人工智能技术的发展,集成学习方法在时序预测领域的应用越来越广泛,而Adaboost-SCN(Adaptive Boosting结合随机配置网络)的强回归器正是在这一背景下应运而生。 Adaboost-SCN的核心思想是结合了Adaboost算法的自适应集成思想与随机配置网络(SCN)的非线性映射能力,以此构建一个能够准确处理复杂时序数据的强回归模型。Adaboost算法通过集成多个弱回归模型来提升整体的预测性能,而随机配置网络是一种基于随机投影的神经网络,能够捕捉数据中的非线性关系。通过两者的结合,Adaboost-SCN能够在保证模型复杂度的同时,避免过拟合,并提高预测的准确性。 集成学习在时序预测中的优势在于,它能够通过整合多个模型的优势,来改善单一模型可能出现的不足。例如,不同模型可能在捕捉数据的线性和非线性特征上各有所长,集成学习可以通过加权的方式整合这些模型的预测结果,从而达到更优的预测效果。此外,集成学习还能够增强模型的泛化能力,使模型在面对新数据时依然保持较高的预测性能。 随机配置网络(SCN)作为一种新的神经网络结构,通过随机化的方法来简化神经网络的结构,其核心思想是在网络的输入层和输出层之间引入一个随机映射层,从而使得网络在保持原有性能的同时,大幅减少模型的复杂度和计算量。随机配置网络的引入,为传统的时序预测方法提供了新的研究思路和解决方案。 在实际应用中,集成学习中的强回归器及其在时序预测中的应用主要表现在能够提供更为准确、稳定和快速的预测结果。例如,在金融市场中,准确的股票价格预测可以为投资者提供重要的决策支持;在气象预测中,准确的降雨量预测可以为防灾减灾提供重要的参考;在能源管理中,准确的电力消耗预测可以为电网调度提供指导。因此,Adaboost-SCN在时序预测中的应用前景十分广阔。 在应用Adaboost-SCN进行时序预测时,用户可以通过替换数据集,将模型快速应用于自身的任务。整个过程通常包括数据的预处理、模型参数的设定、模型训练和预测等步骤。其中,数据预处理是关键步骤之一,需要根据实际的数据特征和预测需求选择合适的方法。例如,对于具有明显季节性特征的数据,可以选择进行季节性分解;对于具有趋势的数据,可以选择差分等方法来平稳数据。 在模型训练阶段,可以通过交叉验证的方法来选择最优的模型参数,以达到最佳的预测效果。此外,集成学习的灵活性还体现在对于不同数据集,可以通过调整集成模型中各弱模型的权重,来实现对数据的更好拟合。 Adaboost-SCN作为一种集成学习的强回归器,通过结合Adaboost算法和随机配置网络的优势,在时序预测领域展示出了显著的效果和应用前景。它的实践不仅对数据分析师和工程师们具有重要的参考价值,也为相关领域的科研和实际应用提供了新的思路。
2025-06-19 12:48:14 936KB
1
Java调用PI时序库是将Java应用程序与OSIsoft的PI系统进行集成的重要方式,主要用于数据采集、处理和分析。PI时序库是PI系统的一部分,提供了对时序数据的强大支持,而JDBC(Java Database Connectivity)驱动则是Java语言连接数据库的标准接口。在Java中调用PI时序库,我们需要依赖特定的JDBC驱动,这里提到的是"PI-JDBC-Driver.jar"。 理解Java JDBC:JDBC是Java语言访问各种类型数据库的统一接口,由Java SDK提供,它定义了Java程序如何通过API与数据库进行交互。JDBC驱动主要有四种类型,分别为Type 1、2、3和4,其中Type 4是纯Java实现,提供了更好的性能和更直接的协议支持。 对于PI时序库,OSIsoft提供了JDBC驱动,即"PI-JDBC-Driver.jar",它是一个Type 4驱动,允许Java应用程序直接与PI Server通信,无需经过中间层如ODBC。使用这个驱动,我们可以执行SQL查询来读取、写入或更新PI时序数据。 在实际应用中,使用PI JDBC驱动的步骤大致如下: 1. **导入驱动**:在Java项目中,首先需要将"PI-JDBC-Driver.jar"添加到类路径中,这样Java虚拟机才能找到并加载驱动。 2. **建立连接**:使用`Class.forName()`方法加载驱动,然后通过`DriverManager.getConnection()`创建与PI Server的连接。连接字符串通常包含服务器地址、端口、用户名和密码等信息。 3. **创建Statement或PreparedStatement**:根据需求,可以创建`Statement`对象执行基本SQL语句,或者创建`PreparedStatement`对象执行预编译的SQL语句,以提高性能和安全性。 4. **执行查询**:调用`executeQuery()`或`executeUpdate()`方法执行SQL查询或DML操作。对于查询,结果将返回一个`ResultSet`对象,可以遍历获取数据。 5. **处理结果**:如果执行的是查询,需要遍历`ResultSet`,获取每一行的数据。`ResultSet`提供了多种获取数据的方法,如`getString()`、`getDouble()`等。 6. **关闭资源**:操作完成后,记得关闭`ResultSet`、`Statement`和`Connection`,以释放数据库资源。 在PI时序库中,可以使用SQL语句查询和操作时序数据。例如,你可以查询某个标签(tag)在特定时间段内的数据,或者写入新的时序值。PI JDBC驱动也支持PI特有的函数,如`PIValue`、`PISummary`等,用于处理PI特有的数据格式和计算。 "PI-JDBC-Driver.jar"使得Java开发者能够利用熟悉的Java编程环境和JDBC接口,高效地与PI系统交互,实现了Java应用与PI时序库之间的无缝连接。在开发过程中,需要注意PI系统的特性和最佳实践,以确保数据操作的正确性和性能。同时,理解并熟练掌握JDBC API也是关键,这将有助于编写出高效、健壮的Java应用程序。
2025-06-04 23:10:08 192KB java
1
### 电子科技大学计算机组成原理实验课1-实验4:中小规模时序逻辑设计 #### 实验背景及目标 本实验是电子科技大学计算机组成原理课程的一部分,主要针对中小规模时序逻辑设计这一主题展开实践教学。实验的目标是让学生通过具体操作熟悉和掌握74x161计数器的功能及其应用,尤其是如何利用该计数器实现不同模值的计数器设计。通过本实验,学生可以深入理解时序逻辑电路的基本原理,并能够运用这些原理来解决实际问题。 #### 实验重点内容解析 **1. 74x161计数器的逻辑功能** - **异步清零**: 当CLEAR端口接收到低电平(0)时,无论其他输入端的状态如何,计数器都会被清零。 - **同步并行置数**: 在时钟脉冲的上升沿到来时,如果LOAD端口处于低电平(0),则计数器会将并行输入端D、C、B、A的数据加载到计数器中。 - **二进制同步加法计数**: 当CLEAR端口处于高电平(1),LOAD端口也处于高电平(1),且Enable P和Enable T都处于高电平(1)时,计数器会根据输入的时钟脉冲信号进行加法计数。 - **保持功能**: 当COUNT端口处于高电平(1),LOAD端口也处于高电平(1),但Enable P或Enable T之一处于低电平(0)时,计数器将保持当前状态不变。 **2. 实验内容分析** - **测试单个74x161计数器**: 使用1Hz时钟信号作为输入,通过LED灯显示计数器的状态变化,验证其基本逻辑功能。 - **级联两片74x161实现模256计数器**: 通过将一片计数器的进位输出(RCO)连接到另一片计数器的时钟输入(CLK),从而实现模256计数器的设计。 - **实现模6和模10计数器**: 通过对74x161计数器的适当修改,如使用非门、或门等小规模逻辑门电路,设计出特定模值的计数器。 - **实现模60计数器**: 将两个不同模值的计数器级联起来,一个负责模6计数,另一个负责模10计数,最终通过适当的电路连接实现模60计数器。 **3. 实验原理详解** - **74x161计数器的逻辑功能**: - **Clock**: 时钟脉冲输入端,通常在上升沿触发计数操作。 - **CLEAR**: 异步清零端,当此端为低电平时,计数器会被清零。 - **LOAD**: 同步置数端,用于加载数据。 - **Enable P/Enable T**: 计数器工作状态控制端,用于控制计数器的工作模式。 - **D~A**: 数据输入端,用于同步置数操作。 - **RCO**: 进位信号输出端,用于级联多个计数器。 - **QD~QA**: 输出端,表示计数器的当前状态。 - **实验设计要点**: - **级联设计**: 通过将一个计数器的进位输出连接到下一个计数器的时钟输入来实现更高模值的计数器。 - **非门、或门等小规模逻辑门的应用**: 在设计特殊模值的计数器时,可以使用这些逻辑门来改变计数器的行为,例如在达到特定值时重置计数器。 - **组合逻辑设计**: 根据所需计数器的功能,设计合适的逻辑电路来满足需求。 **4. 实验器材** - 数字逻辑实验箱 - 74HC04(非门) - 74HC32(或门) - 74HC00(与非门) - 74HC86(异或门) - 74HC153(数据选择器、多路复用器) - 74HC161 计数器 2 片 **5. 实验步骤** - **查阅资料**: 查阅74x161的数据手册,了解其功能。 - **连接电路**: 根据实验内容连接输入和输出导线。 - **观察结果**: 观察指示灯的显示是否符合预期。 - **组合逻辑设计**: 设计输出的与或式,根据实验箱上的实际芯片进行逻辑表达式的变换。 - **测试功能**: 测试电路是否完成了相应的逻辑功能。 **6. 实验数据记录** - 对于每种计数器的设计,都需要记录实际的测试数据,并与理论值进行对比。 **7. 结论** 通过本次实验,学生不仅掌握了74x161计数器的基本功能和使用方法,还学会了如何利用该计数器和其他逻辑门设计出不同模值的计数器。此外,实验还锻炼了学生的实践能力和逻辑思维能力,为进一步学习更复杂的时序逻辑电路打下了坚实的基础。
2025-06-04 21:41:14 979KB 编程语言 逻辑电路
1
### 电子科技大学计算机组成原理实验课1-实验5:Verilog时序逻辑设计 #### 实验概述 本次实验是电子科技大学计算机组成原理课程中的一个重要环节,主要目标是通过实际操作来掌握时序逻辑电路的设计方法,特别是使用Verilog硬件描述语言进行设计与仿真的过程。实验分为五个主要部分,包括边沿D触发器74x74、4位通用移位寄存器74x194、3位最大序列长度线性反馈移位寄存器(LFSR)、4位同步计数器74x163以及基于74x163设计的1Hz数字信号发生器。 #### 实验目的 1. **理解并掌握边沿D触发器74x74、同步计数器74x163、4位通用移位寄存器74x194的工作原理。** 2. **使用Verilog语言对这些基本组件进行设计与仿真。** 3. **设计一个3位LFSR计数器,并实现其功能。** 4. **设计一个1Hz数字信号发生器,作为LFSR计数器的时钟信号。** #### 实验内容详解 **1. 边沿D触发器74x74** - **工作原理**:边沿D触发器是一种基本的存储单元,具有置位和清零功能。当CLK(时钟信号)上升沿到来时,根据D输入的状态更新输出Q的状态。 - **Verilog设计**:使用Verilog代码描述该触发器的行为。例如,下面给出了一个简单的边沿D触发器的Verilog实现: ```verilog `timescale 1ns / 1ps module D(CLK, D, PR_L, CLR_L, Q, QN); input CLK, D, PR_L, CLR_L; output Q, QN; wire w1, w2, w3, w4; nand(w1, PR_L, w2, w4); nand(w2, w1, CLR_L, CLK); nand(w3, w2, CLK, w4); nand(w4, w3, CLR_L, D); nand(Q, PR_L, w2, QN); nand(QN, Q, w3, CLR_L); endmodule ``` **2. 4位通用移位寄存器74x194** - **工作原理**:4位通用移位寄存器允许数据按照指定的方向(左移或右移)移动,并可以通过不同的控制信号进行串行或并行加载数据。 - **Verilog设计**:使用Verilog描述74x194的逻辑行为。例如,可以使用如下的Verilog代码实现: ```verilog `timescale 1ns / 1ps module shift_register(DS, SH_LDS, MR, QS, QD); input [3:0] DS; input SH_LDS, MR; output reg [3:0] QS, QD; always @(posedge SH_LDS or posedge MR) begin if (MR) begin QS <= 0; QD <= 0; end else begin QS <= DS; QD <= QS << 1; end end endmodule ``` **3. 3位LFSR计数器** - **设计原理**:LFSR是一种特殊的移位寄存器,通常用于生成伪随机数序列。在这个实验中,需要设计一个3位的LFSR计数器。 - **Verilog设计**:利用上面提到的4位通用移位寄存器74x194和一些额外的逻辑门来构建3位LFSR计数器。设计时需要考虑反馈路径的构造。 **4. 4位同步计数器74x163** - **工作原理**:同步计数器能够在时钟信号的作用下递增计数。 - **Verilog设计**:使用Verilog语言实现74x163的功能。例如,可以使用以下代码: ```verilog `timescale 1ns / 1ps module counter(CLK, LD, ENP, Q, CO); input CLK, LD, ENP; output reg [3:0] Q; output reg CO; always @(posedge CLK or posedge LD) begin if (LD) begin Q <= 4'b0000; end else if (ENP) begin Q <= Q + 1; end end assign CO = (Q == 4'b1111); endmodule ``` **5. 1Hz数字信号发生器** - **设计原理**:利用74x163和其他小规模逻辑门设计1Hz的数字信号发生器。假设输入为100MHz,需要设计一个分频器来将频率降低到1Hz。 - **Verilog设计**:设计一个分频器,将100MHz的输入时钟信号分频为1Hz。这通常涉及多个计数器级联和适当的控制逻辑。 #### 实验总结 本次实验不仅让学生掌握了基本时序逻辑电路的设计方法,还学会了如何使用Verilog语言进行电路设计和仿真。通过具体的实验任务,学生能够深入理解各种时序逻辑元件的工作机制,并将其应用于实际的电路设计中。这对于未来从事计算机组成原理相关领域的学习和研究都是非常有帮助的。
2025-06-04 20:55:54 1.41MB 编程语言 Verilog
1
在深入探讨STM32微控制器与LCD屏幕的8080接口时序驱动之前,有必要理解这两种硬件的基本概念和作用。STM32系列微控制器是由意法半导体(STMicroelectronics)生产的32位ARM Cortex-M微控制器。该系列微控制器广泛应用于嵌入式系统的控制与处理。LCD(Liquid Crystal Display,液晶显示器)是一种用于显示信息的电子显示设备,可显示文本、图像等视觉输出。 8080接口是一种并行接口标准,广泛应用于微处理器和外部设备之间的数据传输。在与LCD屏幕连接时,8080接口需要遵守特定的时序要求,以保证数据能够正确、高效地传输。在开发过程中,开发者需针对特定的LCD屏幕和微控制器型号编写或修改时序驱动代码。 本次分享的压缩包中包含了多个与STM32微控制器和8080时序驱动LCD屏幕相关的文件。文件"keilkilll.bat"可能是一个批处理文件,用于在Keil开发环境中执行特定操作。"11-1.69IPS显示屏STM32F103硬件SPI+DMA例程.zip"和"03-1.8LCD显示屏STM32F103RC_SPI例程 lvgl.zip"提供了在STM32F103上通过硬件SPI接口和DMA(Direct Memory Access,直接内存访问)实现LCD驱动的例程。"如何使用cubemx 配置lcd 01显示ok stm32f407_lvgl_hal_cubemx.zip"则展示了如何使用CubeMX工具来配置STM32F407,并集成LVGL图形库,实现基本的LCD显示。"闲鱼买的屏幕 NT35510 电阻屏 移植LVGL测试.zip"和"lcd驱动.zip"分别提供了针对特定屏幕NT35510的移植测试例程和基础的LCD驱动代码。 以上文件的集合显示了在实际开发中,如何将STM32微控制器与各种LCD屏幕配合工作。从硬件SPI接口到DMA传输,再到图形库LVGL的集成,这一系列的文件为开发人员提供了丰富的资源和参考例程。通过这些文件,开发者可以更深入地理解LCD屏幕与微控制器的交互过程,尤其是8080接口的时序控制。这不仅有助于在项目中实现屏幕驱动功能,还能在遇到类似问题时提供解决方案。 LVGL(Light and Versatile Graphics Library)是一个开源的嵌入式图形库,它为小型MCU提供了丰富的图形功能,适用于嵌入式系统中的用户界面设计。结合STM32微控制器和LVGL,开发者可以创建更加友好的人机交互界面,提高产品的用户体验。 这个压缩包包含的文件为我们提供了一个关于如何将STM32微控制器与LCD屏幕通过8080接口进行高效连接的完整教程。它不仅涵盖了基础的硬件连接和时序控制,还包括了高级的图形库集成,极大地丰富了开发者的工具箱。通过学习和使用这些文件中的资源,开发者可以更快地掌握LCD屏幕驱动开发,加速项目的开发进度。此外,这些内容对于希望深入理解STM32与LCD交互原理的读者来说,也是非常宝贵的资料。
2025-05-12 15:49:09 128.24MB stm32 8080
1
在计算机科学领域,单总线CPU设计是一项基础而关键的技术,它涉及计算机体系结构的核心概念。CPU(中央处理器)作为计算机系统中的核心部件,负责执行指令、处理数据。而单总线设计是指CPU内部的数据、地址和控制信号共用一条传输路径。这种设计方法简化了硬件结构,但由于所有信号都使用同一路径,这可能导致数据传输瓶颈,影响性能。然而,通过精心设计和优化,单总线系统依然可以实现高效的数据处理。 在本压缩包中,文件名为“单总线CPU设计(现代时序)(HUST)”的文件,可能包含了一系列设计和实现单总线CPU的实验内容。这些实验可能是针对某本《计算机组成原理》教材中的相关章节所设计的,而“头歌实验答案”则可能表示这些文件是对应实验的答案部分。通过这些答案,学习者可以对照自己的实验结果,检验和加深对单总线CPU设计原理的理解。 从这个压缩包中,我们可以提取到与单总线CPU设计相关的多个知识点。首先是计算机组成原理的基本概念,包括CPU的基本组成(如控制单元、算术逻辑单元、寄存器组和总线等)以及它们的工作原理。其次是现代时序的概念,即如何在单总线设计中处理好时序问题,保证数据在正确的时间点被正确地传输和处理。时序问题通常涉及到触发器、时钟信号和存储元件的精确同步。 进一步,我们还可以了解到单总线CPU设计中的关键挑战,例如如何在有限的总线资源下合理安排数据的传输路径,以及如何设计控制逻辑以减少资源冲突和提高数据处理的效率。这涉及到对现代计算机体系结构中不同部件之间交互的深入理解。 此外,这份压缩包可能还包含了一些设计实验,这些实验允许学习者亲自动手实践单总线CPU的设计。通过这些实验,学生可以从理论走向实践,逐步掌握CPU设计的关键技术,包括指令集的设计、微操作的分解、控制信号的生成以及数据路径的配置等。 这个压缩包为计算机专业的学生和从业者提供了一个学习和实践单总线CPU设计的机会,帮助他们深入理解计算机组成原理,并在现代时序控制的背景下,掌握CPU设计的核心技术和设计方法。
2025-05-07 19:12:22 318KB 计算机组成原理
1
内容概要:本文详细介绍了SPI从机模块的Verilog实现方法,涵盖了模块的基本框架、状态机的设计、时钟同步机制以及数据移位寄存器的具体实现。文章首先定义了SPI从机模块的接口信号,接着深入探讨了状态机的工作流程,包括片选信号的有效性和无效处理、数据的接收与发送逻辑。为了确保系统的稳定性,文中还讨论了时钟同步、边沿检测、片选信号的消抖处理等关键技术点。此外,文章提供了详细的测试建议和调试经验,帮助开发者更好地理解和应用SPI从机模块。 适合人群:嵌入式系统开发人员、FPGA设计师、硬件工程师。 使用场景及目标:适用于需要实现高效、稳定的SPI通信的嵌入式系统项目。主要目标是掌握SPI从机模块的Verilog实现方法,解决常见的时序问题,提高系统的可靠性和性能。 其他说明:文章不仅提供了完整的代码示例,还分享了许多实用的调试技巧和注意事项,如时钟同步、边沿检测、片选信号的消抖处理等。对于初学者来说,这些实践经验将极大提升他们的开发效率和解决问题的能力。
2025-05-07 16:45:00 163KB FPGA Verilog SPI 嵌入式系统
1
头歌教学实践平台计算机组成原理单总线CPU设计(定长指令周期3级时序)(HUST),第1关—第6关。源代码txt格式。 第1关 MIPS指令译码器设计.txt 第2关 定长指令周期---时序发生器FSM设计.txt 第3关 定长指令周期---时序发生器输出函数设计.txt 第4关 硬布线控制器组合逻辑单元.txt 第5关 定长指令周期---硬布线控制器设计.txt 第6关 定长指令周期---单总线CPU设计.txt
2025-05-05 20:25:40 219KB 课程资源
1