本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。 文章链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122768747
2022-02-02 17:05:56 937.01MB 图像分类
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV1。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
2022-01-27 09:12:29 970.3MB 分类 big data 数据挖掘
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。 关于MobileNet的介绍可以看我以前的文章:https://wanghao.blog.csdn.net/article/details/122699618 通过这篇文章你可以学到: 1、如何加载图片数据,并处理数据。 2、如果将标签转为onehot编码 3、如何使用数据增强。 4、如何使用mixup。 5、如何切分数据集。 6、如何加载预训练模型。 详见文章链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122700746
2022-01-26 17:07:35 936.3MB 分类 数据挖掘 人工智能 机器学习
496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。 README: AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
2022-01-23 12:58:33 11.24MB 分类任务 AGnews 新闻数据集
1
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.X版本如何使用Keras实现图像分类,分类的模型使用InceptionV3。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。 详见文章:https://wanghao.blog.csdn.net/article/details/122642906
2022-01-23 10:05:51 936.32MB 分类 big data 数据挖掘
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.X版本如何使用Keras实现图像分类,分类的模型使用ResNet50。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
2022-01-23 09:15:29 936.29MB 分类 big data 数据挖掘
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.0以上的版本如何使用Keras实现图像分类,分类的模型使用DenseNet121。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,节省内存 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。 详见:https://wanghao.blog.csdn.net/article/details/122607363?spm=1001.2014.3001.5502
2022-01-20 21:08:39 695.31MB 分类 big data 数据挖掘
Keras实现DenseNet121图像分类任务。数据集使用猫狗大战。详见文章:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122599503?spm=1001.2014.3001.5501
2022-01-20 16:09:48 695.26MB keras 分类 人工智能 深度学习
这个是基于Jupyter写的CoAtNet网络在CIFAR10数据集上的分类任务,里面包括了混淆矩阵和Acc&Loss的可视化,请放心食用。
2021-12-21 19:09:24 373.98MB pytorch jupyter 计算机视觉 CIFAR10
文字分类器 此仓库是基于Tensorflow2.3的文本分类任务,分别支持: 随机初始单词嵌入+ TextCNN 随机初始词嵌入+注意+ TextCNN 随机初始单词嵌入+ TextRCNN Word2Vec + TextCNN Word2Vec +注意+ TextCNN Word2Vec + TextRCNN 伯特嵌入(没有微调,直接取向量)+ TextCNN Bert嵌入(没有微调,直接取向量)+ TextRCNN 代码支持二分类和多分类,此项目基于爬取的游戏评论正是个二元的情感分类作为演示。 环境 python 3.6.7 张量流== 2.3.0 gensim == 3.8.3 杰巴== 0.42.1 sklearn == 0.0 其他环境见requirements.txt 更新历史 日期 版本 描述 2018-12-01 v1.0.0 初始仓库 2020-10-
2021-12-19 13:33:47 65.45MB word2vec textcnn textrcnn tensorflow2
1