某银行为提升信用卡反欺诈检测能力,提供了脱敏后的一份个人交易记录。考虑数据本身的隐私性,数据提供之初已经进行了类似PCA的处理,并得到了若干数据特征。在不需要做额外特征提取工作的情况下,本项目意在通过逻辑回归模型的调优,得到较为准确可靠的反欺诈检测方法,分析过程中使用到了Python Pandas, Numpy, Matplotlib, Seaborn以及机器学习库Scikit-Learn等。
数据链接:
链接:https://pan.baidu.com/s/11uT0CHYPenX_67qTdr-Tjg
密码:b9xo
完整代码实现如下:
下采样完整代码:
import pandas as
1