基于传统图像分割方法的Matlab肺结节提取系统:从CT图像分割肺结节并评估分割效果,附GUI人机界面版本及主函介绍,Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。 ,核心关键词: Matlab; 肺结节分割; 肺结节提取; 源程序; GUI人机界面; 传统图像分割; 非深度学习方法; LIDC-IDRI数据集; 读取图像; 图像增强; Gam
2025-05-16 22:21:33 312KB scss
1
内容概要:本文档作为建模大赛的入门指南,详细介绍了建模大赛的概念、类型、竞赛流程、核心步骤与技巧,并提供实战案例解析。文档首先概述了建模大赛,指出其以数学、计算机技术为核心,主要分为数学建模、3D建模和AI大模型竞赛三类。接着深入解析了数学建模竞赛,涵盖组队策略(如三人分别负责建模、编程、论文写作)、时间安排(72小时内完成全流程)以及问题分析、模型建立、编程实现和论文撰写的要点。文中还提供了物流路径优化的实战案例,展示了如何将实际问题转化为图论问题并采用Dijkstra或蚁群算法求解。最后,文档推荐了不同类型建模的学习资源与工具,并给出了新手避坑建议,如避免过度复杂化模型、重视可视化呈现等。; 适合人群:对建模大赛感兴趣的初学者,特别是高校学生及希望参与数学建模竞赛的新手。; 使用场景及目标:①了解建模大赛的基本概念和分类;②掌握数学建模竞赛的具体流程与分工;③学习如何将实际问题转化为数学模型并求解;④获取实战经验和常见错误规避方法。; 其他说明:文档不仅提供了理论知识,还结合具体实例和代码片段帮助读者更好地理解和实践建模过程。建议新手从中小型赛事开始积累经验,逐步提升技能水平。
2025-05-16 10:22:58 646KB 数学建模 Python MATLAB 3D建模
1
内容概要:本文详细介绍了数学建模的概念、基本步骤及其在各个领域的广泛应用。首先解释了什么是数学建模,强调它是一种将实际问题转化为数学问题,并通过数学方法进行求解的技术手段。接着按逻辑步骤阐述了数学建模的具体过程:确定问题—收集信息并定义模型—基于已知条件创建适当的数学表达式—应用适当方法解模型—检验与改进直至模型可靠可用。文中通过实际案例解释了数学建模的价值所在,并列举了几种典型建模技术和工具(如线性规划、灰色预测模型、Matlab和Python)。此外,特别提到了学生或专业人士在参加数学建模竞赛时应该采取的最佳做法和个人准备建议。 适用人群:对数学建模感兴趣的学生、研究人员、工程师及其他专业人士,尤其是那些希望通过系统学习成为合格的建模者的人。 使用场景及目标:帮助读者全面理解数学建模的过程和技术,学会利用建模解决来自不同行业的真实问题;为有兴趣参赛的人士提供赛前培训和实战演练指导。 其他说明:文章中穿插了一些具体的数学模型示例,以及如何使用现代计算工具来辅助模型构建。同时强调团队合作的重要性,并分享有关团队角色匹配及工作分工的经验。
2025-05-15 13:53:02 355KB 数学建模 线性规划 灰色预测 Matlab
1
内容概要:本文详细介绍了爱玛电动车控制器的设计与实现,涵盖硬件设计(原理图和PCB)、电机FOC控制技术和EG89M52的附加资料。硬件部分深入探讨了电源管理、MOS管驱动、电流采样等关键环节,确保电路稳定可靠。软件部分着重讲解了基于STM32/GD32的FOC算法实现,包括ADC采样、PWM控制、Clark/Park变换、SVPWM调制及PI调节器的优化方法。此外,还分享了一些实用的调试技巧和实战经验。 适合人群:对电动车控制器设计感兴趣的电子工程师、嵌入式开发者及电机控制研究人员。 使用场景及目标:①掌握电动车控制器的硬件设计要点,如电源管理、PCB布局等;②理解并实现高效的FOC控制算法,提升电机性能;③学习调试技巧,解决实际应用中的问题。 其他说明:文中提供的代码片段和设计思路有助于快速入门和深入研究,尤其适用于希望了解大厂成熟方案的技术爱好者。
2025-05-15 13:48:45 1.38MB
1
《探究不同模型下的颗粒流运动特性:从DPM到PBM模型的深度解析》,Fluent颗粒流模拟:从DPM模型到PBM模型的全面解析,Fluent的颗粒流 稀疏颗粒常使用DPM模型进行解决 不考虑颗粒碰撞变形,但考虑颗粒之间的碰撞行为,可以使用欧拉颗粒流模型 考虑颗粒碰撞摩擦以及变形,可以使用其内置的DEM模型,也可以采用与其他DEM软件耦合处理 考虑颗粒在运动过程中的破碎与汇聚,可以考虑使用PBM模型 ,Fluent颗粒流;DPM模型;欧拉颗粒流模型;DEM模型;PBM模型,颗粒流模拟:DPM模型、欧拉模型、DEM模型与PBM模型的综合应用
2025-05-14 16:34:44 392KB 正则表达式
1
最大最小爬山算法 max-min 爬山贝叶斯网络结构学习算法,Ioannis Tsamardinos·Laura E. Brown·Constantin F. Aliferis,Mach Learn DOI 10.1007/s10994-006-6889-7 *该算法从观测数据重建贝叶斯网络。 因此,它首先使用最大最小父子节点 (MMPC) 算法构建 DAG(有向无环图)的骨架。 之后,它使用贝叶斯狄利克雷似然等价统一分数引导顶点之间的边。 有关更多信息,请阅读所附报告或*最大-最小爬山贝叶斯网络结构学习算法,作者:Ioannis Tsamardinos、Laura E. Brown 和 Constantin F. Aliferis。 安装 在您可以使用此包之前,请确保您已安装最新的 R版本 ( >=3.1 )、 RCPP版本 (>=0.11.1) 和igraph包。 下载 R 源文
2025-05-13 15:22:54 23.8MB
1
超表面逆向设计是光学和光电子领域的先进研发方向,尤其在实现传统光学元件功能的同时,能够探索全新的光学现象和应用。超表面逆向设计的核心在于使用逆向工程技术来实现特定的光学功能,这一技术正处于迅速发展的阶段,并广泛应用于光学系统、滤波器以及能够动态调整光学特性的器件等领域。 在超表面的设计中,耦合模理论(CMT)扮演着至关重要的角色。这一理论用于分析和设计超表面的电磁行为,特别是在研究光波与超表面相互作用时的模式耦合现象。这一理论在实现新型光学功能,例如负折射、光学隐身和超分辨率成像方面具有重要应用。此外,耦合模理论在提升能量转换效率、开发动态可调谐超表面、实现多波长和多角度操作等方面也有显著的应用前景。 在技术实现上,超表面逆向设计的实现涉及多个方面的研究,如电磁仿真、材料科学、电子工程等。以电磁仿真为例,CST Microwave Studio是一款强大的电磁仿真软件,能够帮助研究者建立超表面的仿真模型,并进行模拟分析,从而优化设计,实现预期的光学功能。另一个关键工具是有限时域差分法(FDTD),它是一种利用计算机模拟光波在介质中传播和与物体相互作用的数值解法。FDTD在超表面逆向设计中的应用十分广泛,可以与Python编程语言结合,实现逆向设计的自动化和优化。 从应用角度看,超表面逆向设计的应用前景十分广阔,包括在太阳能电池、光电探测器等能量转换设备中的应用,以及在多波长和多角度操作中的应用。在量子光学和光子学领域,通过超表面操控量子态,探索量子通信、量子计算和量子信息处理中的应用也是研究的热点。在拓扑光学和新型光子晶体设计方面,基于超表面的结构设计也展示了巨大的潜力。 本次“超表面逆向设计及前沿应用(从基础入门到论文复现)”线上培训班,旨在传授超表面设计的关键技术和理论,为参与者提供深入理解超表面技术的平台。培训内容覆盖了超表面的基础知识、逆向设计概念、耦合模理论、电磁仿真软件的使用以及FDTD逆向设计基础入门等。通过多个具体案例操作的实践教学,参与者可以更直观地理解理论知识,并掌握仿真分析的技能。培训还涉及利用耦合模理论进行逆向设计的实例,以及FDTD仿真实例,帮助参与者掌握将理论知识转化为实际应用的能力。 通过本课程的学习,参与者将能够掌握超表面设计的关键技术和理论,为未来的职业发展和技术创新打下坚实的基础。这不仅是对科研人员和工程师的一个专业技能提升机会,也是对研究生和对超表面技术感兴趣的专业人士的一个重要学习平台。
2025-05-12 15:24:14 871KB 耦合模理论 电磁仿真 FDTD
1
从外部导入数据进行THD分析matlab 一、导入外部数据到 MATLAB 工作空间 在进行THD分析之前,首先需要将外部数据导入到 MATLAB 工作空间中。在这个示例中,我们使用CSV文件作为外部数据源。双击第一列可以更改变量名显示已导入的数据。这一步骤对于后续的数据分析至关重要。 二、SIMULINK 模型建立 在导入数据后,下一步骤是建立 SIMULINK 模型。我们可以打开 SIMULINK,新建一个仿真模型。在这里,我们可以使用 SIMULINK-SINKS 拖取一个示波器 SCOPE出来。然后,我们可以到 SIMSCAPE-POWERSYSYTEM-SPECIALIZED TECHNOLOGY-FUNDAMENTAL BLOCKS 拖取 POWERGUI出来。这样,我们就可以建立一个基本的仿真模型。 三、数据导入到 MATLAB 工作空间 在 SIMULINK 模型中,我们可以将 SCOPE 里面的时间变量和采样点值物理值变量导入到 MATLAB 工作空间中。为此,我们可以运行 SIMULINK 模型,这样我们就可以在工作空间中看到这些变量。这一步骤对于后续的数据分析非常重要。 四、数据连接到 GUI 的分析界面 在将数据导入到 MATLAB 工作空间后,我们可以将这些数据用命令行赋值给示波器变量。这样,我们就可以将这些信号连接到了 GUI 的分析界面。在这里,我们可以使用命令行 power_fftscope 或者打开 GUI 中的 FFT 进行 THD 分析。 五、THD 分析 在 GUI 的分析界面中,我们可以看到 MAG 指各次谐波幅值占基波幅值的百分数。在这个示例中,我们可以看到 4Khz 高频分量居多,之后进行滤波操作即可。同时,我们也可以使用 THD 公式计算 THD 值。 六、THD 公式计算 THD(Total Harmonic Distortion,总谐波畸变)是衡量信号中谐波畸变程度的指标。THD 的计算公式如下: THD = √(Σ(Ai^2))/A1 其中,Ai 是每个谐波的幅值,A1 是基波幅值。这个公式可以用于计算信号中的 THD 值。 从外部导入数据进行 THD 分析 matlab 需要经过以下步骤:导入外部数据到 MATLAB 工作空间,建立 SIMULINK 模型,数据导入到 MATLAB 工作空间,数据连接到 GUI 的分析界面,THD 分析和 THD 公式计算。这些步骤对于进行 THD 分析非常重要。
2025-05-11 16:06:50 751KB matlab 谐波分析
1
CANoe开发从入门到精通
2025-05-10 19:27:08 664KB can总线 车载测试
1
基于FPGA的运动目标检测跟踪系统:从顶层设计到模块实现的全流程实践(进阶版结合XY轴舵机控制),基于FPGA的运动目标检测跟踪系统项目 ,FPGA项目,FPGA图像处理 FPGA项目 采用帧间差分法作为核心算法,该项目涉及图像采集,颜色空间转,帧间差分核心算法,腐蚀等形态学处理,目标定位,目标标识,图像显示等模块。 通过该项目可以学习到以下两方面内容 1.FPGA顶层架构设计、各功能模块详细设计、模块间接口设计; 2.各模块的RTL编写与仿真,在线逻辑分析,程序调试等。 本项目提供完整项目源程序,仿真程序,在线逻辑分析,以及讲解等 ***另有结合XY两轴舵机控制的进阶版本,详细信息欢迎咨询*** 涉及整个项目流程的完整实现,适合于FPGA学习者,对于提高FPGA设计能力有很大的帮助。 非诚勿扰 主页还有更多有关FPGA图像处理算法实现的项目,欢迎咨询。 其中包括: 1.颜色空间转 2.快速中值滤波算法 3.sobel边缘检测算法 4.OTSU(最大类间方差)算法 5.卡尔曼滤波算法 6.局部自适应分割算法 7.目标检测与跟踪算法 8.图像增强去雾算法 #FPGA #图像处理 #
2025-05-08 21:18:30 3.05MB
1