深度学习+图像分类+水质污染等级分类数据集+水质分类
2024-09-13 10:18:31 222.67MB 深度学习 数据集 水质分类
1
表名称:“1990-2022地级市专利授权数”。 1.指标: 当年获得的发明数量:表示每个会计年度内获得的发明专利数量。 当年获得的实用新型数量:表示每个会计年度内获得的实用新型专利数量。 当年获得的外观设计数量:表示每个会计年度内获得的外观设计专利数量。 专利授权数:表示每个会计年度内获得的所有类型专利授权的总数。 2.包含的年份:数据集包含了从1990年至2022年的专利授权信息。 3.包含的城市:数据集包含了多个城市的专利授权信息,包括但不限于安徽省的安庆市、蚌埠市、亳州市、巢湖市、池州市、滁州市、阜阳市、合肥市,广东省的潮州市、东莞市、佛山市、广州市、河源市、惠州市、江门市、揭阳市、茂名市、梅州市、清远市、汕头市、汕尾市、韶关市、深圳市、阳江市、云浮市、湛江市、肇庆市、中山市、珠海市等。
2024-09-12 15:50:04 489KB 数据集
1
包含类别如下: Abondance-奶牛,Afrikaner阿非利卡牛,Albera阿尔伯拉,AmericanMilkingDevon美国产奶德文郡,Angus,AnkoleWatusi,Aquitaine,Argentine,Armorican,Arouquesa,Asturian,AustralianBraford,Bargur,Barzona,Bazadaise,Belgian,Belmont,BlackHereford,BlondeAquitaine,Boran,Braford,Brahman,Brangus,Braunvieh,Brava,brownSwiss,Burlina,Busa,Cachena,Camargue,CanadianSpeckle,Canadienne,Canchim,Caracu,Casta,Charolais,Chianina,Corriente,Corsican,Criollo,Dangi,DanishRed,Deoni,Devon,Dexter,Dhannir,Droughtmaster,DutchBelted,EnglishLonghorn...
2024-09-11 15:41:07 144.43MB 数据集
1
在本项目中,“Volve-field-machine-learning”是一个专注于利用机器学习技术分析北海Volve油田的公开数据集的实践案例。2018年,挪威石油公司Equinor出于促进学术和工业研究的目的,发布了这个丰富的数据集,为油气田的研究带来了新的机遇。这个数据集包含了与地下地质特征、油田运营及生产相关的各种信息,为研究人员提供了深入理解油气田开采过程的宝贵资源。 Volve油田的数据集涵盖了多个方面,包括地质模型、地震数据、井测数据、生产历史等。这些数据可以用于训练和验证机器学习模型,以解决诸如储量估计、产量预测、故障检测等油气田管理中的关键问题。通过机器学习,我们可以挖掘出隐藏在大量复杂数据中的模式和规律,从而优化生产决策和提高效率。 在探索这个数据集时,Jupyter Notebook被用作主要的分析工具。Jupyter Notebook是一款交互式计算环境,支持编写和运行Python代码,非常适合数据预处理、可视化和建模工作。用户可以在同一个环境中进行数据探索、编写模型和展示结果,使得整个分析过程更为直观和透明。 在这个项目中,可能涉及的机器学习方法包括监督学习、无监督学习以及深度学习。例如,监督学习可以用来建立产量预测模型,其中历史产量作为目标变量,而地质特征、井参数等作为输入变量;无监督学习如聚类分析可以用于识别相似的井或地质区域,以便进行更精细化的管理;深度学习模型如卷积神经网络(CNN)可以处理地震数据,提取地下结构的特征。 在Volve-field-machine-learning-main文件夹中,很可能包含了一系列的Jupyter Notebook文件,每个文件对应一个特定的分析任务或机器学习模型。这些文件将详细记录数据清洗、特征工程、模型选择、训练过程以及结果评估的步骤。通过阅读和复现这些Notebook,读者可以学习到如何将机器学习应用于实际的油气田数据,并从中获得对数据驱动决策的理解。 这个项目为油气行业的研究者和工程师提供了一个实战平台,通过运用机器学习技术,他们能够深入理解和优化Volve油田的运营,同时也为其他类似油田的数据分析提供了参考。随着大数据和人工智能技术的不断发展,这种数据驱动的决策方式将在未来的能源行业中发挥越来越重要的作用。
2024-09-10 15:22:37 7.93MB JupyterNotebook
1
matlab优化微分方程组代码自述文件 这些数据集的目的是将它们用于在Pyhon中使用机器学习库及其派生概念验证(POC)进行测试。 由于PyTorch具有与图形处理单元或GPU一起使用的内置功能,因此我们期望在开始全面移植MRST之前进行演示,基于PyTorch GPU的张量可以显着减少储层模拟期间的计算时间。 评价概念验证 步骤如下: 找到构成MRST求解器代码的偏微分方程(PDE)。 使用Matlab和Octave测试求解器的运行时间。 最新的《使用MATLAB进行储层模拟入门》一书(Knut-Andreas Lie的Octave )中提供了一些测试代码。 见附录。 正在Matlab和Octave下测试代码的性能。 代码将发布在单独的存储库中。 使用PyTorch for GPU复制Python中的功能。 将Matlab代码转换为PyTorch 测量原始MRST求解器的计算时间。 如果在PyTorch计算时间快10到100,我们将继续将更多的Matlab代码转换为基于PyTorch张量的计算。 数据集 MRST(下载) 固相萃取9 固相萃取10 案例B4 赛格 OPM 固相萃取1
2024-09-10 15:15:19 99.4MB 系统开源
1
内容概要: 空间推理验证码数据集+完整标注 适用场景: 适用于训练空间推理验证码的目标检测模型, 我自己也基于此数据集及标注数据训练出了识别率98%以上的安某客空间推理验证码的识别模型 更多建议: 如果你是刚接触yolo目标检测模型,建议先移步我的博客主页,博客内有手把手训练的教学。
2024-09-10 14:37:23 12.15MB 目标检测 数据集
1
UCR时间序列数据集是专为时间序列分类任务设计的一个广泛使用的数据集合,它由美国加利福尼亚大学河滨分校(University of California, Riverside)的Chen, Keogh和Ratanamahatana等人创建并维护。这个数据集包含了各种不同领域的多种类型的时间序列数据,用于测试和比较时间序列分类算法的性能。时间序列分析是统计学和机器学习领域中的一个重要分支,主要关注如何在有序数据点中识别模式和趋势。 时间序列数据是按照特定时间顺序记录的数值,例如股票价格、温度读数、人体运动传感器数据等。在UCR数据集中,每个时间序列都代表一个特定的类别或事件,而分类任务就是根据这些时间序列来预测它们所属的类别。这种任务在许多实际应用中都很常见,如医学诊断、金融市场分析、工业设备故障预测等。 UCR数据集的显著特点是其多样性和复杂性。数据集包含了超过100个不同的数据集,每个数据集都具有不同的特征,如不同长度的时间序列、不同数量的类别的不平衡等。此外,数据集还经过精心设计,以确保在不同规模和难度上对分类算法进行测试。这使得UCR数据集成为评估新时间序列分类方法效果的理想选择。 深度学习在处理时间序列数据时发挥了重要作用,尤其是通过使用循环神经网络(RNNs)和长短时记忆网络(LSTMs)。这些模型能够捕捉到时间序列中的长期依赖关系,对于识别复杂的时间模式特别有效。在UCR数据集上,可以训练和评估这些深度学习模型,以优化它们在时间序列分类任务上的性能。 为了开始使用UCR数据集,你需要首先解压缩提供的"UCR数据.zip"文件,然后查阅解释文档以了解数据集的结构和各部分含义。通常,每个数据集会包含两个文件:一个用于训练,一个用于测试。数据通常以一维数组的形式表示,其中每个元素对应时间序列中的一个点。在开发和比较算法时,你可能需要将数据预处理成适合深度学习模型的格式,比如将时间序列转换为固定长度的序列或者通过填充和截断来处理不同长度的序列。 在实验过程中,你可以尝试不同的深度学习架构,调整超参数,如学习率、隐藏层大小等,以找到最佳模型。同时,由于UCR数据集中的某些数据集类别分布不均,你还需要注意评估指标的选择,比如使用宏平均(macro-average)或微平均(micro-average)F1分数,以更公平地评估算法在各个类别的表现。 UCR时间序列数据集为研究和开发时间序列分类方法提供了丰富的资源。通过深度学习技术,我们可以构建出强大的模型来处理各种类型的时间序列数据,从而在众多实际应用场景中实现高效、准确的预测。
2024-09-10 10:55:38 121.7MB 时间序列 数据集 深度学习
1
在这个“红酒数据集分析并可视化实现”的项目中,我们将探讨一个包含了1599个样本的红酒品质数据集。这个数据集共有12个特征,包括了红酒的11个理化性质以及一个质量评分(1到10的评分体系)。这些特性对于评估红酒的质量至关重要,因为它们反映了红酒的基本构成和化学特性。 我们需要导入必要的Python库,如pandas、numpy、matplotlib和seaborn,以便进行数据处理、统计分析和可视化。我们使用pandas的`read_csv`函数读取CSV文件,确保所有的列都已经被正确地解析,并且通过`head()`方法查看数据集的前几行,了解数据的基本结构。通过`shape`属性可以得知数据集包含1599行和12列,而`info()`方法则确认了没有缺失值的存在。 接下来,我们可以对数据进行基本的描述性统计分析,例如计算每个特征的计数、均值、标准差、最小值、25%分位数、50%分位数(中位数)、75%分位数和最大值。这有助于我们理解数据集的分布和集中趋势。例如,固定酸度(fixed acidity)的平均值为8.32,标准差为1.74,表明红酒的酸度在4.6到9.2之间有较大的变异;挥发性酸度(volatile acidity)的中位数为0.52,而75%分位数为0.64,这提示我们大部分红酒的挥发性酸度相对较低。 为了更深入地理解这些特征与红酒质量的关系,我们可以使用可视化工具,如matplotlib和seaborn。例如,我们可以绘制散点图来观察特定特征(如酒精含量、密度或氯化物)与质量评分之间的关系。此外,还可以创建箱线图以展示不同质量等级的红酒在各特征上的分布差异。通过颜色编码,可以清晰地看出哪些特征在不同质量等级间有显著差异。 还可以利用热力图来展示特征间的相关性。这种方法可以帮助我们识别哪些特征可能一起影响红酒的质量,或者哪些特征彼此独立。例如,如果固定酸度和挥发性酸度高度相关,那么这两个指标可能在红酒评价中具有相似的重要性。 进一步的分析可能包括使用回归模型(如线性回归、决策树或随机森林)来预测红酒质量,以及通过交叉验证和模型评估来确定最佳预测模型。我们还可以进行主成分分析(PCA)或因子分析,以减少特征的维度并发现潜在的隐藏结构。 通过可视化分析,我们可以得出关于红酒品质的洞察,比如哪些理化性质对质量评分影响最大,以及这些特性如何共同作用来决定红酒的整体质量。这些发现不仅有助于红酒生产者优化他们的酿造过程,也可能对消费者提供有价值的购买建议。 这个红酒数据集提供了丰富的信息,通过数据分析和可视化,我们可以揭示出红酒质量与其理化性质之间的复杂关系,从而深化对红酒品质的理解。
2024-09-09 18:42:11 1.6MB 数据集
1
我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
研究生医学图像处理数据集,医学相关的,全身上下分类分割都有
2024-09-06 15:20:34 224B 图像处理 数据集
1