========================================== 资源中包含: 1.word文档全文-最优化方法求解-圆环内传感器节点最大最小距离分布 2.MATLAB代码-最优化方法求解-圆环内传感器节点最大最小距离分布 ========================================== 假设有个传感器节点随机分布在半径为公里的圆区域内(如图1所示),现要求:通过调整各传感器的位置,使其稀疏分布于外环半径为,内环半径为的圆环区域内(即保证圆环内的邻近传感器节点之间的距离尽可能地远,以减轻电磁互扰)。请你运用所学知识完成以下工作: 1.根据题目背景建立传感器位置优化模型 2.提出相关优化算法并求解该数学模型 3.运用相关优化软件给出仿真结果
2025-06-05 22:10:22 98KB matlab 人工智能
1
随着信息技术的飞速发展,数据分析与处理成为了当今社会的一个重要领域。特别是在人工智能和大数据的浪潮中,数据的获取与分析显得尤为重要。在这一背景下,爬取网站数据成为了获取信息的重要手段之一。本文将围绕“Python源码-爬取Boss直聘数据.zip”这一主题,深入探讨如何利用Python语言进行网络数据的抓取和分析。 Python作为一门广泛应用于人工智能、数据分析等领域的编程语言,其强大的库支持使得网络爬虫的开发变得相对简单。其中,requests库用于发送网络请求,BeautifulSoup库用于解析HTML页面,而pandas库则用于数据的分析和处理。这些库的组合使得Python能够高效地完成从网页中提取数据、清洗数据、分析数据等任务。 在进行Boss直聘数据爬取的过程中,首先需要分析目标网站的结构和数据存储方式。Boss直聘作为国内知名的招聘网站,其网站结构相对复杂,数据以JSON格式动态加载。因此,进行数据爬取之前需要详细研究其网页的JavaScript渲染逻辑,以便能够正确模拟浏览器行为,获取到真实的数据接口。 在爬取过程中,需编写Python脚本以模拟用户登录,获取会话信息,并发送携带相应cookies的请求到目标接口。在解析接口返回的数据时,通常会遇到数据加密或是混淆的情况,这需要利用Python强大的字符串处理和解码能力,对数据进行还原。如果数据接口采用了反爬虫机制,比如IP限制或请求频率限制,那么就需要设计合理的请求策略,比如使用代理IP池或设置合理的请求间隔。 数据爬取成功后,接下来是对数据的清洗和存储。清洗数据主要是指去除无用的信息,如空白字符、多余的空格等,以及将数据转换为结构化的格式,如CSV或JSON。在这个阶段,pandas库能够发挥巨大作用,通过简单的几行代码便能对数据进行有效的整理。清洗后的数据可以存储到文件中,也可以直接导入到数据库,为后续的数据分析提供便利。 数据分析是爬虫项目的最终目标之一。通过Python的数据分析库,如pandas、numpy、scikit-learn等,可以对爬取的数据进行统计分析、趋势预测等。例如,可以对Boss直聘网站上的职位信息进行统计分析,了解当前市场对不同技能人才的需求情况,或是预测未来人才市场的变化趋势。 在进行爬虫开发时,还需注意遵守相关法律法规和网站的使用协议。不恰当的爬虫行为可能会对网站造成不必要的负担,甚至可能触犯法律。因此,开发者需要在技术实现的同时,平衡好法律和伦理的界限。 随着技术的发展,爬虫技术也在不断进步。例如,人工智能技术的应用使得爬虫能够更加智能地识别和解析网页内容,同时也提高了反爬虫技术的难度。因此,对于爬虫开发者来说,持续学习和关注最新的技术动态是十分必要的。 Python语言以其简洁的语法和强大的库支持,在网络爬虫和数据分析领域展现出了巨大的优势。通过对Boss直聘数据的爬取和分析,不仅可以获取到丰富的行业信息,还可以锻炼和提升自身的编程能力和数据分析能力。随着技术的不断进步,相信未来Python会在更多领域发挥其重要的作用。
2025-06-05 13:25:02 160KB python 源码 人工智能 数据分析
1
题目:基于RFID技术的考勤系统 内容:设计编写一个基于RFID技术的考勤系统,可有效管理门的开启与关闭,保证授权人员自由出入,限制未授权人员进入。系统采用模块化设计思想,设计考勤登记模块,考勤监控模块,串口配置模块,可实现卡片的发放,登记员工信息,授权用户使用卡片出入时,系统自动读取、记录员工考勤信息及工资发放。 对于已经注册的卡片,每次模拟刷卡视为上班或下班行为。如果没在上班的员工刷卡后,自动记录刷卡时间,并在下一次刷卡后判定下班并累加工时并同步到数据库。具有模拟发放工资的功能。 1. 在RFIDCardEvent中从数据库中获取到IDInfo对象。(任务点1) 2. 根据info中的入场时间,员工的行为(任务点2),如果是未注册则弹窗提示注册并切换到未注册的界面 3. 若入场时间为0表示员工此时打算上班,则执行入场登记操作,在数据库内更新入场时间为当前时间,重新获取新的IDInfo对象并切换到入场界面(任务点3)。 4. 若入场时间非0表示员工此时打算下班,则计算本次工作时间(当前时间戳-IDInfo内进入时间戳),计算累加后的累加工时和未发放工资的工时
2025-06-04 23:18:37 381KB RFID 人工智能 考勤系统
1
YOLOv11(You Only Look Once version 11),作为计算机视觉领域的重要算法,专注于目标检测任务,通过单次网络前向传播来实现对图像中不同对象的定位和分类。YOLOv11是由一个活跃的开源社区和一群专业研究人员共同维护和改进的,旨在提供一个快速、准确且易于实现的解决方案,适用于各种应用,如自动驾驶、安防监控、工业检测等。 YOLOv11算法的核心思想是将目标检测任务转化为一个回归问题,即直接从图像像素到边界框坐标和类别的预测。这种端到端的方法使得YOLOv11能够实现实时检测,并且具有相对较高的准确性。YOLOv11在处理速度和准确率之间取得了一个良好的平衡,使其在许多实时应用中成为首选。 在YOLOv11中,整个图像被划分成一个个格子,每个格子负责预测边界框以及对应的类别概率。这种网格结构的设计有助于算法捕获图像中的细微特征,并且通过这种方式,YOLOv11能够处理目标的不同大小和尺度。此外,YOLOv11算法在损失函数的设计上也进行了优化,使其能够更好地训练网络,以适应不同的任务需求。 随着深度学习技术的不断进步,YOLOv11作为算法的一个版本,不断地吸取新的研究成果,以改进其性能。比如,引入注意力机制、优化网络结构、增加数据增强方法等,都是为了提升检测的准确性和鲁棒性。YOLOv11还通过引入锚框(anchor boxes)来解决目标形状和大小的多样性问题,进一步提高了检测的精度。 YOLOv11的实现通常依赖于深度学习框架,如TensorFlow或PyTorch。这些框架提供了一套丰富的工具和库函数,使得研究人员和开发人员可以更加容易地构建和训练YOLOv11模型。YOLOv11的代码和预训练模型通常可以在官方网站和开源项目中找到,从而方便社区的成员下载、使用和进一步的开发。 由于YOLOv11具有较好的实时性能和较高的准确率,它被广泛应用于包括但不限于工业自动化、智能监控、医疗影像分析以及无人驾驶等众多领域。在这些领域中,快速准确的目标检测对于决策和响应至关重要。例如,在自动驾驶车辆中,能够快速准确地识别道路上的其他车辆、行人、交通标志等,对于确保行车安全具有决定性意义。 此外,YOLOv11还受到了社区的热烈响应,因为它易于理解和实现。与其他目标检测算法相比,YOLOv11简洁的设计使其更易于研究人员和开发者进行修改和扩展,以满足特定应用的需求。因此,YOLOv11不仅仅是一个目标检测算法,它还代表了一个活跃的研究方向,不断地推动计算机视觉技术的边界。 YOLOv11的成功也催生了许多变体和衍生作品,它们在不同的方面对原始算法进行了改进。这些变体通常针对特定的场景或者性能指标进行优化,例如提高小物体检测的精度或提升在低光环境下的检测性能。因此,即使YOLOv11已经非常优秀,研究人员和工程师们仍然在不断地探索如何进一步提升其性能。 YOLOv11不仅仅是一个算法,它还是一个活跃的研究和应用社区。随着计算机视觉和深度学习技术的不断进步,YOLOv11也在不断地进化,以应对未来可能出现的挑战和需求。无论是在研究机构、企业还是学术界,YOLOv11都将继续发挥其重要作用,推动计算机视觉技术的发展和应用。
2025-06-04 14:13:33 2.03MB 计算机视觉 人工智能 深度学习
1
书中程序与代码,详细的很
2025-06-03 19:42:08 647.41MB
1
全球人工智能技术创新大赛(赛道三_小布助手对话短文本语义匹配)_text_match
2025-06-03 16:01:35 2.12MB
1
"人工智能详解" 人工智能是一门跨学科的领域,涉及计算机科学、数学、心理学、哲学、工程学等多个领域。人工智能的主要研究和应用领域包括问题求解、逻辑推理与定理证明、自然语言理解、自动程序设计、专家系统、机器学习、神经网络、机器人学、模式识别、智能控制、智能检索、智能调度与指挥、分布式人工智能与 Agent、计算智能与进化计算、数据挖掘与知识发现、人工生命等。 人工智能的学派有符号主义、连接主义和行为主义等。符号主义认为人工智能起源于数理逻辑;连接主义认为人工智能起源于仿生学,特别是对人脑模型的研究;行为主义认为人工智能源于控制论。 人工智能的主要研究和应用领域之一是专家系统。专家系统是一种能够模拟人类专家的推理和决策能力的计算机系统。专家系统的特点是能够根据特定的领域知识和经验,进行推理和决策。专家系统的应用领域非常广泛,包括医药、金融、制造业、交通等领域。 机器学习是人工智能的另一个重要领域。机器学习是指计算机系统通过学习和训练,提高其推理和决策能力的过程。机器学习的方法包括监督学习、无监督学习、半监督学习等。机器学习的应用领域包括图像识别、自然语言处理、语音识别等。 计算智能与进化计算是人工智能的另一个新的研究热点。计算智能与进化计算是指使用进化算法和计算智能方法解决复杂问题的过程。计算智能与进化计算的应用领域包括优化问题、调度问题、资源分配问题等。 数据挖掘与知识发现是人工智能的另一个新的研究热点。数据挖掘与知识发现是指从大量数据中挖掘有价值的信息和知识的过程。数据挖掘与知识发现的应用领域包括商业智能、医疗保健、金融等领域。 人工生命是人工智能的另一个新的研究热点。人工生命是指使用计算机系统模拟生命体的行为和演化的过程。人工生命的应用领域包括生物工程、系统生物学、生态学等领域。 在人工智能的研究和应用中,存在许多挑战和问题,例如可解释性、鲁棒性、安全性等问题。为了解决这些问题,需要结合多个领域的知识和技术,进行深入的研究和探索。
2025-06-01 00:17:17 105KB
1
在现代电商领域,推荐系统已经成为提升用户体验和促进销售的关键技术之一。基于Spark的机器学习算法在构建这样的系统中发挥着重要作用。本项目“基于Spark机器学习的电商推荐系统”聚焦于利用大数据处理能力和高效的机器学习模型来实现精准的个性化推荐。 Spark作为分布式计算框架,以其高效、易用和灵活的特点,广泛应用于数据处理和分析任务,尤其在机器学习领域。它支持DataFrame和Dataset API,使得数据操作更加简洁,并且提供了MLlib库,包含了多种机器学习算法,如协同过滤、K-means聚类和逻辑回归等,这些在推荐系统中非常常见。 推荐系统通常分为基于内容的推荐和协同过滤推荐两大类。基于内容的推荐依赖于用户的历史行为和商品的属性,通过计算用户兴趣与商品特征之间的相似度进行推荐。协同过滤则基于用户-物品交互矩阵,找出具有相似购买或浏览行为的用户,然后推荐他们喜欢的物品给目标用户。 在本项目中,首先需要对电商数据进行预处理,包括清洗、转换和整合。这可能涉及到处理缺失值、异常值,将非结构化数据(如评论文本)转化为结构化特征,以及构建用户-物品交互矩阵。Spark的DataFrame API在这一步中十分有用,能够方便地进行数据处理和转换。 接下来,可以使用Spark MLlib中的协同过滤算法,如 Alternating Least Squares (ALS)。ALS通过最小化误差来估计用户和物品的隐向量,从而预测用户对未评价物品的评分。训练得到的模型可以用来生成个性化的商品推荐列表。 除了基础的协同过滤,还可以结合深度学习方法,如矩阵分解网络(Neural Collaborative Filtering,NCF),进一步提高推荐精度。NCF利用神经网络捕捉非线性关系,能更好地模拟用户的行为模式。 为了评估推荐系统的性能,通常会采用如Precision@K、Recall@K和Mean Average Precision (MAP)等指标。这些指标衡量了推荐的准确性和多样性。此外,A/B测试也是验证推荐效果的有效手段,通过对比实验组和对照组的用户行为,观察推荐策略对业务的影响。 在实际应用中,推荐系统还需要考虑实时性,Spark Streaming可以用于处理实时数据流,结合Spark的MLlib模型,实现在线学习和动态更新推荐结果。 总结来说,“基于Spark机器学习的电商推荐系统”涵盖了大数据处理、机器学习模型构建以及推荐系统设计等多个关键环节,展示了Spark在构建高效推荐系统中的强大能力。通过深入理解和实践该项目,可以提升在人工智能和大数据领域的专业技能。
2025-05-30 23:12:48 8.4MB 人工智能 spark
1
本项目为基于yolov5的ai自瞄,理论上适用于各种fps类型游戏,通过对于yolov5的二次开发,实现鼠标精准定位。本项目为大学生课程项目,适用于各种大作业以及相关专业人员学习、参考,并可在此基础上完善相关功能,训练调优。此外本项目基于纯视觉实现目标识别,通过驱动程序驱动鼠标,不涉及游戏内存修改,安全畅玩。 标题中的“yolo系列”指的是YOLO(You Only Look Once)目标检测算法的最新版本,这是一个在计算机视觉领域广泛应用的实时物体检测系统。YOLO系列从最初的v1发展到现在的v8,每次更新都带来了性能上的提升和优化。YOLO的核心思想是将图像分类和边界框预测结合在一个统一的神经网络框架中,实现快速且准确的目标检测。
2025-05-30 23:07:47 607KB 人工智能
1
OpenCV for Unity 是一个资产插件,用于在 Unity 跨平台游戏引擎中使用 OpenCV。 跨平台: iOS & Android & mac& win 商店地址: https://assetstore.unity.com/packages/tools/integration/opencv-for-unity-21088 Unity 的 Texture2D和OpenCV 的 Mat相互转换的辅助函数。许多类实现 IDisposable,允许您使用“using”语句管理资源。 如何有效地开发 OpenCV 应用程序。 OpenCVForUnity 示例 (GitHub):https://github.com/EnoxSoftware/OpenCVForUnity EnoxSoftware 存储库 (GitHub):https://github.com/EnoxSoftware?tab=repositories 使用 OpenCV for Unity 的示例代码可用。 基于标记的 AR 示例 无标记 AR 示例 面部追踪器示例 换脸示例 面罩示例 实时人脸识别示例
2025-05-30 15:07:26 609.53MB opencv unity 人工智能 人脸检测
1