盗版模块的实现 除了代码本身的注释外,我还写了一篇文章,您可以在找到有关Inception Module和GoogLeNet的进一步说明。 内容 inception.py模块的实现 Inception Train & Test.ipynb :笔记本,用于培训和测试Inception模块的实现。 layers :包含实现基本层的文件[卷积,最大池化和完全连接] 如果您在查看笔记本文件时遇到问题,请单击。
2022-06-17 11:10:55 11.07MB deep-learning tensorflow inception googlenet
1
matlab精度检验代码 DiagnosisDL2TF 使用TensorFlow建立简单的轴承故障诊断模型 1、数据来源及介绍 轴承、轴、齿轮是旋转机械重要组成部分,为了验证深度学习在旋转装备故障分类识别的有效性,本文选取凯斯西储大学轴承数据库(Case Western Reserve University, CWRU)[9]为验证数据。CWRU实验装置如图 4‑1所示。轴承通过电火花加工设置成四种尺寸的故障直径,分别为0.007、0.014、0.021、0.028英寸。实验中使用加速度传感器采集振动信号,传感器分别被放置在电机驱动端与风扇端。由于驱动端采集到的振动信号数据全面,并且收到其他部件和环境噪声的干扰较少,因此本文选取驱动端采集的振动信号作为实验数据。实验数据包括4种轴承状态下采集到的振动信号,分别为正常状态(Normal,N)、滚珠故障状态(Ball Fault,BF)、外圈故障状态(Outer Race Fault,ORF)以及内圈故障状态(Inner Race Fault,IRF),每种状态下采集到的信号又按照故障直径与负载的大小进行分类,其中故障直径分别为0.007、
2022-06-15 18:06:29 10KB 系统开源
1
本内容是根据北京大学曹平老师的《人工智能实战:tensorflow笔记》的代码和笔记整理、以及人工智能白皮书和tensorflow技术文档,以及自己在实现这些代码的思路,希望看了我的内容、都可以更好的投入人工智能开发行业中去。
基于Tensorflow框架实现神经网络模型对手写数字的识别 基于Tensorflow框架实现神经网络模型对手写数字的识别 基于Tensorflow框架实现神经网络模型对手写数字的识别 基于Tensorflow框架实现神经网络模型对手写数字的识别
2022-06-14 20:47:29 103KB python 机器学习
1
这是一个通过opencv读取图片,并进行物体识别的demo,能够正常识别图像,且注释很清楚
2022-06-14 18:15:22 5KB TensorFlow o
1
tensorflow-2.9.1-cp39-cp39-win_amd64.whl 使用pip在线安装下载很慢,并且下载到中途还有可能失败,所以给大家提供一个CSDN下载地址。下载下来之后的本地安装方法见博文https://blog.csdn.net/wenhao_ir/article/details/125260565
2022-06-14 18:05:39 423.47MB tensorflow-2.9.1
text-summarization-tensorflow 代码来自: 这个是关于英文文本的介绍,然后自己尝试应用在中文文本上,效果不是很理想。。 中文数据集来自:
2022-06-14 17:32:56 177KB Python
1
DLology博客 怎么跑 简单方法:运行 。 另外,如果您想使用图像而不是图像,则此仓库随附。 需要安装 。 分叉并将此存储库克隆到本地计算机。 https://github.com/Tony607/object_detection_demo 安装所需的库 pip3 install -r requirements.txt 第1步:注释一些图像 使用自定义对象保存一些照片,最好将jpg扩展名保存到./data/raw目录。 (如果您的对象很简单,例如此存储库随附的对象,则20张图像就足够了。) 将那些照片调整为统一大小。 例如(800, 600)与 python resize_images.py --raw-dir ./data/raw --save-dir ./data/images --ext jpg --target-size "(800, 600)" 调整大小的图像位于.
1
多层感知机(multi-layer perceptron)实现手写体分类(TensorFlow)
2022-06-14 13:44:38 3KB 多层感知机
1
Tensorflow学习实战之mnist手写体识别数据准备构建模型训练模型评估结果可视化显示 Tensorflow继续学习,今天是入门级的mnist手写体识别,改变前两次的线性回归,这次是逻辑回归,这样随之改变的是损失函数等 Tensorflow里面有一个examples的MNIST的手写,直接运行会自动下载。 训练了20次,效果还不错,慢慢的理解,把以前不懂得好多东西,学习中慢慢得到补充 收获: reshape,行优先,逐行排列,相当于把一整行数字排列后按reshape得行列填充进去,我的理解相当于图像里得resize one hot独热编码,一个为1,其余所有为0,适用于分类任务,是一种稀
2022-06-14 12:59:17 470KB fl flow IS
1