使用pytorch搭建LSTM二维坐标轨迹预测模型 使用[i:i+step]的数据预测下一步的数据。step是步长
2022-10-13 17:05:56 98KB lstm
1
MATLAB实现CNN卷积神经网络时间序列预测(完整源码和数据) 数据为单变量时间序列数据, 运行环境MATLAB2018b及以上, 一种基于cnn的时间序列预测方法,采用确定好的cnn模型对所述分量数据进行预测,得到所述预测时间点对应的预测结果。
2022-10-13 12:05:11 717KB CNN 卷积神经网络 时间序列预测 MATLAB
在本研究中,我们提出了一种基于自我关注的区域流感预测模型,称为SAIFlu-Net。该模型利用一个较长的短期记忆网络来提取每个区域的时间序列模式,并利用自我注意机制来发现发生模式之间的相似性。为了评估其性能,我们使用每周区域流感数据集对现有的预测模型进行了广泛的实验。结果表明,该模型在均方根误差和皮尔逊相关系数方面均优于其他模型。
2022-10-11 16:05:18 1.84MB LSTM GNN
1
LSTM-SVFM-RF时间预测序列算法实现
2022-10-10 21:05:41 283KB SVM LSTM 随机森林
1
多元线性回归,支持向量机,随机森林,BP神经网络,LSTM回归预测模型
1
态势感知 (SA) 已被认为是电力系统稳定和安全运行的关键保证,尤其是在可再生能源整合后的复杂不确定性下。在本文中,提出了一种人工智能驱动的解决方案,以实现涵盖感知,理解和预测的SA的全面实现,其中最后一个是更先进但具有挑战性的,因此以前没有在任何文献中讨论过。通过聚合两个强大的深度学习结构,提出了一种新颖的SA模型: 卷积神经网络 (CNN) 和长期短期记忆 (LSTM) 递归神经网络。提出的CNN-LSTM模型具有在时空测量数据上实现协作数据挖掘的优势,即从相量测量单元数据中同时学习时空特征。在SA模型中设计了两个功能分支: 应急定位器 (用于检测当前的确切故障位置) 和稳定性预测器 (用于预测将来系统的稳定性状态)。测试一下结果表明,即使在较低的数据充分性水平下,该模型也具有很高的性能 (准确性)。
2022-10-10 21:05:37 3.92MB 机器学习在态势感知领域的应用
1
基线、线性、DNN、LSTM单步模型学习代码
2022-10-10 17:05:31 10KB 时序模型 深度学习
1
基线、线性、DNN、LSTM多步模型学习代码
2022-10-10 17:05:30 10KB 时序模型 深度学习
1
基线、线性、DNN、LSTM多输出模型学习代码
2022-10-10 17:05:29 11KB 时序模型 深度学习
1
医学成像中的深度学习:如何在MRI检查中自动检测膝盖受伤? 该存储库包含一个卷积神经网络的实现,该网络对MRI检查中特定的膝盖损伤进行分类。 它还包含我在上撰写的一系列帖子的材料。 数据集:MRNet 数据来自斯坦福大学ML Group研究实验室。 它由斯坦福大学医学中心进行的1,370次膝盖MRI检查,以研究前交叉韧带(ACL)眼泪的存在。 有关ACL撕裂问题和MRNet数据的更多信息,请参阅我的博客文章,您可以在Jupyter Notebook中调查数据并构建以下数据可视化: 要了解有关数据以及如何实现此可视化窗口小部件的更多信息,请阅读 代码结构: 下表总结了该项目的体系结构: 有关该代码的更多详细信息,请参阅我的第二篇。 如何使用代码: 如果您想自己重新训练网络,则必须通过此向斯坦福大学索取数据。 下载数据后,创建一个data文件夹并将其放置在项目的根目录下。 您
2022-10-10 15:30:20 11.29MB computer-vision deep-learning acl cnn
1