用matlab编写的提升小波算法,应用于图像处理,很好用
2024-06-18 16:45:32 3KB
高光检测及图像修复-matlab图像处理-去反光-去图像反光
2024-06-18 16:37:29 3KB 图像处理 matlab
1
系统辨识与MATLAB仿真程序与剖析夹 有详细的matlab程序
2024-06-18 16:17:46 10.68MB
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2024-06-18 16:14:19 243KB matlab
1
路径规划算法是指在有障碍物的工作环境中寻找一条从起点到终点的、无碰撞地绕过所有障碍物的运动路径。路径规划算法较多,大体上可分为全局路径规划算法和局部路径规划算法两类。其中,全局路径规划方法包括位形空间法、广义锥方法、顶点图像法、栅格划归法; 局部路径规划算法主要有人工势场法等。
2024-06-18 10:32:22 3KB matlab
1
本文深入探讨了电力系统动态状态估计的两种方法:扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。文章首先介绍了这两种滤波技术的基本原理和算法流程,接着通过实例分析和数值模拟,比较了它们在电力系统状态估计中的性能差异。此外,文章还讨论了如何根据电力系统的具体特点和需求,选择最合适的滤波方法。本文旨在为电力工程师和研究人员提供有关动态状态估计的实用指南,并推动相关领域的进一步研究和发展。 适用人群:电力工程师、控制系统研究人员、卡尔曼滤波技术爱好者 使用场景:电力系统状态监测、故障诊断、系统控制与优化 电力系统、动态状态估计、扩展卡尔曼滤波、无迹卡尔曼滤波
2024-06-18 09:47:32 8.82MB matlab 无迹卡尔曼滤波
1
matlab开发-LocalNormalization。减少光照的差异。
2024-06-17 22:17:47 2KB 硬件接口和物联网
1
DWA(Dynamic Window Approach)算法是一种用于机器人路径规划的动态方法,它由Dieter Fox等人在1997年提出。DWA主要设计用于处理机器人的动态规划问题,尤其是在机器人需要考虑自身运动学约束和环境中的动态障碍物时。以下是DWA算法的详细介绍: ### 1. 算法背景 在许多实际应用中,机器人面临的路径规划问题不仅需要考虑静态障碍物,还需要实时响应环境中的动态变化。DWA算法通过使用一个动态窗口来评估潜在的运动,从而适应这些动态条件。 ### 2. 算法原理 DWA算法的核心思想是在每个时间步评估机器人的多个潜在运动,并选择一个既避开障碍物又达到目标的运动。 #### a. 动态窗口 在每个时间步,算法不是在整个工作空间中搜索,而是在机器人周围的一个有限的“动态窗口”内进行采样。 #### b. 运动评估 对于每个采样点,算法评估该运动的“好坏”,考虑因素包括到达目标的距离、避开障碍物的程度以及机器人的运动学约束。 #### c. 概率选择 算法根据评估为每个运动分配一个概率,然后随机选择一个运动作为下一步的执行动作。 ### 3. 算法步骤
2024-06-17 20:54:14 7KB matlab
1
1、资源内容:基于Matlab实现蚁群算法路径规划仿真(源码+说明文档).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、更多仿真源码和数据集下载列表(自行寻找自己需要的):https://blog.csdn.net/m0_62143653?type=download 4、免责声明:本资源作为“参考资料”而不是“定制需求”不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-06-17 20:34:28 728KB matlab
本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。
2024-06-17 19:00:03 325KB matlab 毕业设计 身份证识别 课程设计
1