(1)方法原理及思想 (2)模型介绍 (3)BP 人工神经网络步骤 (4)应用及效果分析
2023-03-31 00:29:43 233KB 神经网络
1
使用集成卡尔曼滤波器学习神经网络权重 该存储库包含用于使用Ensemble Kalman滤波器学习神经网络权重的代码。 有三个主要实验: 与反向传播的比较: generate_comparison.py 精度阈值的影响: varying_r.py 从ENKF到反向传播的转换: varying_pretrain.py 每个文件都接受一组命令行参数,这些参数确定数据集,模型体系结构和ENKF超参数。 例如: python generate_comparison.py --dataset=boston_housing --model=fcn --r=0.01 --initial_noise=0.03 --batch_size=16 --timesteps=25 --num_epochs=5 --num_particles=50 从命令行运行此命令,将使用指定的学习超参数,将波士顿房屋
2023-03-30 19:38:26 39KB Python
1
matlab程序基于bp神经网络车牌识别设计 程序可以运行 需要搭配matlabr2019a 需要的软件参数自行根据软件提示下载 包含程序和报告
2023-03-30 16:49:02 50.93MB matlab 车牌识别
1
【预测模型】 BP神经网络太阳辐射预测【含Matlab源码 883期】.zip
2023-03-30 14:04:38 150KB
1
iris_classification_BPNeuralNetwork 本文用Python实现了BP神经网络分类算法,根据鸢尾花的4个特征,实现3种鸢尾花的分类。
2023-03-29 21:10:42 23KB 神经网络 人工智能 python 机器学习
1
由 Ian T. Nabney 编写的流行机器学习库“NetLab”的附加组件。 库为 NetLab 实现卡尔曼滤波器训练算法。
2023-03-29 20:19:26 596KB matlab
1
Keras中的字符级CNN 该存储库包含用于字符级卷积神经网络的Keras实现,用于AG新闻主题分类数据集上的文本分类。 已实现以下模型: 张翔,赵俊波,严乐村。 。 NIPS 2015 Yoon Kim,Yacine Jernite,David Sontag,Alexander M.Rush。 。 AAAI 2016 白少杰,齐科·科特尔(J. Zico Kolter),弗拉德·科特(Vladlen Koltun)。 。 ArXiv预印本(2018) Kim的CharCNN最初是经过端到端训练的语言建模管道的一部分,但已被改编为文本分类。 用法 安装依赖项(Tensorflow 1.3和Keras 2.1.3): $ pip install -r requirements.txt 在config.json文件中指定训练和测试数据源以及模型超参数。 运行main.py文件,
2023-03-29 19:13:07 11.26MB Python
1
社交情感分类旨在预测嵌入在由各种用户贡献的在线评论中的情感React的聚合。 这样的任务具有固有的挑战性,因为从自由文本中提取相关语义是一个经典的研究问题。 此外,在线评论通常以稀疏的特征空间为特征,这使得相应的情感分类任务非常困难。 另一方面,尽管由于深度神经网络具有将稀疏的低级特征转换为密集的高级特征的能力,因此已被证明对语音识别和图像分析任务有效,但它们在情感分类上的有效性仍需进一步研究。 本文报道的工作的主要贡献是开发了一种新型的语义丰富的混合神经网络(HNN)模型,该模型利用无监督的教学模型将语义域知识整合到神经网络中,以引导其推理能力和可解释性。 据我们所知,这是将语义纳入神经网络以增强社交情感分类和网络可解释性的第一个成功工作。 通过基于三个现实世界社交媒体数据集的实证研究,我们的实验结果证实,提出的混合神经网络优于其他最新的情感分类方法。
2023-03-29 18:47:23 807KB Social emotion classification hybrid
1
西安交大人工智能课件,包括人工智能 模式识别 神经网络 机器学习等内容。
1
本教程简要介绍了基于梯度下降和 delta 规则的反向传播算法下多层神经网络的训练及其数值实现。 在 MATLAB :trade_mark: 环境中模拟网络,训练它解决字符识别问题和众所周知的 XOR 问题。 获得的结果非常有趣并且表现出优异的性能。 由于该算法是函数的近似,因此它可以用于许多需要系统识别、模式分类等的问题。 关键词:神经网络,多层感知器,训练,模式识别,反向传播,delta 规则,梯度下降。
2023-03-29 15:28:44 119KB matlab
1