利用Pytorch,opencv进行人脸口罩佩戴检测,并且在视频流中显示出来。 里面包含代码文件(.py),数据集文件和训练好的模型文件。如果感觉检测效果不是很好,可以自己重新训练。
2023-04-21 23:35:02 251.9MB 人脸检测 口罩检测 深度学习 Pytorch
1
使用方法:运行main.py文件即可,或者命令行输入"python main.py"。
1
1.深度学习实现中草药(中药材)识别《Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)》 https://blog.csdn.net/guyuealian/article/details/129880963 2.中草药(中药材)图片数据集(Chinese-Medicine-163): https://blog.csdn.net/guyuealian/article/details/129883396
1
考虑到现实环境中的人脸图片在角度、光线、分辨率上的复杂程度,对Inception-ResNet-V1网络结构进行了改进,同时完成了数据集制作、超参数调节等相关工作,并在家庭服务机器人平台上进行了实验研究。实验结果表明,改进的网络结构在LFW测试集上准确率达到99.22%,高于原始网络结构的99.05%;在亚洲人脸数据集上准确率达到99.20%,高于原始网络结构的97.10%;在自建非匹配人脸数据集上误识别率为3.43%,低于原始网络结构的12.28%。可以看出,与原始网络结构相比,改进网络结构提升了人脸识别的准确率且降低了误识别率。
2023-04-20 23:06:47 1.5MB 家庭服务机器人 人脸识别 深度学习
1
资源包含文件:设计报告word+源码及数据 该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括 CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含 transformer、CBHG,数据集包含 stc、primewords、Aishell、thchs30 四个数据集。 声学模型采用 CTC 进行建模,采用 CNN-CTC、GRU-CTC、FSMN 等模型 model_speech,采用 keras 作为编写框架。 详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122512802?spm=1001.2014.3001.5502
由于C++语言的运行优势,多数算法模型在实际应用时需要部署到C++环境下运行,以提高算法速度和稳定性 主要讲述WIn10下在VS工程中通过Opencv部署yolov5模型,步骤包括: 1.python环境下通过export.py导出.onnx模型 2.C++环境下通过opencv的DNN模块进行模型导入和调用 部署完成后的检测效果如下图所示(CPU下运行,无加速!) 适合刚开始转战C++的算法小白
2023-04-20 21:31:38 126MB 深度学习 目标检测 YOLO 计算机视觉
1
由于C++语言的运行优势,多数算法模型在实际应用时需要部署到C++环境下运行,以提高算法速度和稳定性 本文主要讲述WIn10下在VS工程中通过Opencv部署yolov5模型,步骤包括: 1.python环境下通过export.py导出.onnx模型 2.C++环境下通过tensorrt进行模型导入和调用,过程中实现int8量化加速 适合刚开始部署模型的小白或者研究者,内附教程
2023-04-20 20:52:45 9.62MB 目标检测 计算机视觉 YOLO 深度学习
1
车牌识别,YOLOv3、Densenet、卷积神经网络、python
2023-04-20 09:52:54 271.82MB 车牌识别 深度学习 python
1
论文网址 M. Zhao, S. Zhong, X. Fu, et al., Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2943898 https://ieeexplore.ieee.org/document/8850096
2023-04-20 09:39:30 437KB 深度学习 残差 收缩网络
1
针对模拟电路易发生故障且不易诊断的问题,提出了一种基于深度学习的模拟电路故障诊断算法。该算法首先将采样的原始数据制作成语音形式,然后通过时频域变化转化为语谱图,最后再将其送入VGG16模型中进行训练与测试。实验结果表明,该算法用于模拟电路故障诊断时能够识别的故障种类达到9种,同时准确度达到了100%,具有很强的电路故障诊断能力。
2023-04-18 17:24:04 659KB 论文研究
1