行业分类-物理装置-Bert模型训练、分类方法、系统、介质和计算机设备.zip
2021-07-19 09:02:50 806KB 行业分类-物理装置-Bert模型
BERT模型从训练到部署全流程 Tag: BERT 训练 部署 缘起 在群里看到许多朋友在使用BERT模型,网上多数文章只提到了模型的训练方法,后面的生产部署及调用并没有说明。 这段时间使用BERT模型完成了从数据准备到生产部署的全流程,在这里整理出来,方便大家参考。 在下面我将以一个“手机评论的情感分类”为例子,简要说明从训练到部署的全部流程。最终完成后可以使用一个网页进行交互,实时地对输入的评论语句进行分类判断。 基本架构 基本架构为: graph LR A(BERT模型服务端) --> B(API服务端) B-->A B --> C(应用端) C-->B +-------------------+ | 应用端(HTML) | +-------------------+ ^^ || VV +---------------
2021-07-10 20:53:43 891KB 附件源码 文章源码
1
使用Amazon SageMaker微调和部署ProtBert模型进行蛋白质分类 内容 动机 蛋白质是控制生物体的关键基本大分子。 蛋白质定位的研究对于理解蛋白质的功能很重要,对药物设计和其他应用具有重要意义。 它在表征假设的和新发现的蛋白质的细胞功能中也起着重要的作用[1]。 有几项研究工作旨在通过使用高通量方法来定位整个蛋白质组[2-4]。 这些大型数据集提供了有关蛋白质功能以及更普遍的全球细胞过程的重要信息。 但是,它们目前不能达到100%的蛋白质组覆盖率,并且在某些情况下使用的方法可能导致蛋白质子集的错误定位[5,6]。 因此,必须有补充方法来解决这些问题。 在本笔记本中,我们将利用自然语言处理(NLP)技术进行蛋白质序列分类。 想法是将蛋白质序列解释为句子,并将其组成部分-氨基酸-解释为单个单词[7]。 更具体地说,我们将从Hugging Face库中微调Pytorch Pro
1
探究BERT中文基础模型(BERT-Base-Chinese)和BERT中文医学预训练模型(BERT-Re-Pretraining-Med-Chi)在中文医学文献分类上的分类效果及差异原因。[方法] 本研究以34万篇中文医学文献摘要为医学文本预训练语料,分别以16,000和32,000条中文医学文献摘要为分类的训练样本,并以另外的3200条摘要作为测试样本,利用BERT的两个模型来进行中文医学文献分类研究,并以SVM方法作为对比基准。[结果] BERT的两种模型在分类效果上均优于SVM模型,两种模型的F1值均比SVM模型高出5%左右;BERT-Re-Pretraining-Med-Chi模型在两种样本量下F1值分别达到0.8390和0.8607,均为三者中最好的分类效果。[局限] 本研究仅对中图分类号R下的16个类别进行了分类研究,其余4个类别因数据量过少等原因而未纳入分类体系中。[结论] BERT-Re-Pretraining-Med-Chi方法能够显著提升医学文献的分类效果;基于BERT的深度学习方法在多类别大规模训练集下更能体现其分类的优越性。
2021-04-20 16:25:29 560KB BERT
1
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning
2021-03-26 20:20:50 472KB Python开发-自然语言处理
1
用于人际关系分类的R-BERT 本项目采用R-BERT模型:对人物关系进行分类,提升效果明显,在测试集上的F1值达到85%。 数据集 共3901条标注样本,训练集:测试集= 8:2 标注样本:亲戚 1837年6月20日,威廉四世辞世,他的侄女维多利亚即位。 ,其中亲戚为关系,威廉四世为实体1(entity_1 ),维多利亚为实体2(entity_2)。 每一种关系的标注数量如下图: 模型结构 从BERT获得三个向量。 [CLS]令牌向量 实体_1平均向量 平均实体_2向量 将每个矢量传递到完全连接的层。 退出-> tanh-> fc-layer 连接三个向量。 将串联的矢量传递到完全连接层。 辍学-> FC层 完全符合书面条件。 分别平均对entity_1和entity_2隐藏状态向量。 (包括$,#个令牌) 完全连接层之前的Dropout和
2021-03-16 18:10:27 328KB Python
1
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史.pdf
2021-03-08 13:06:43 4.29MB embedding NLP BERT machine
1
tensorflow2.0 对实体命名识别的数据预处理 1
2021-03-04 08:47:46 1.86MB tensorflow2.0 bert NER
1
流行BERT模型的一个简单而完整的实现
2020-01-03 11:39:34 98KB Python开发-自然语言处理
1
BERT模型从训练到部署全流程
2019-12-21 21:40:38 890KB Python开发-自然语言处理
1