三相桥式(两电平)闭环并网仿真 拓扑:两电平逆变器 DC:800V AC:380V 控制:电流内环PI与前馈解耦 滤波器:LCL滤波器 调制:SPWM 功率等级:100kW THD<1% 结果: 电压电流对称三相波形正弦分布满足并网要求 功率输出波形稳定,有功并网,功率因数高。 三相桥式闭环并网仿真技术是一种将直流(DC)电能转换为交流(AC)电能,并通过电网并网的技术。在这一过程中,逆变器的拓扑结构、控制策略、调制方式、滤波器设计等关键因素都会影响到最终的并网效果。具体到本案例,采用了两电平逆变器结构,并设置直流侧电压为800V,交流侧电压为380V,这是因为在并网逆变器中,直流侧通常会接一个大电容,来保持直流电压的稳定。同时,交流侧电压应与电网电压相匹配,以满足并网的基本要求。 控制策略方面,本案例使用了电流内环PI(比例积分)控制与前馈解耦控制。PI控制是一种常见的反馈控制策略,它能够有效地调节电流,保证输出电流的稳定性和准确性。而前馈解耦控制则可以消除电流内环控制中由于电网电压和电感等参数变化带来的耦合影响,提高系统控制的快速性和稳定性。 滤波器设计对于提高并网电流质量至关重要。在本案例中,选择了LCL滤波器,与常用的LC滤波器相比,LCL滤波器具有更好的高频滤波性能和更强的抑制谐波能力,能够进一步降低电流总谐波畸变率(THD),在本案例中达到了小于1%的水平。 调制策略通常决定逆变器输出波形的质量。本案例采用了SPWM(正弦脉宽调制)技术,这种技术能够有效降低输出电压的谐波成分,使输出波形更加接近正弦波,从而有利于提高并网效率和电能质量。 在功率等级方面,案例中的逆变器达到了100kW的功率等级,这样的功率输出可以满足大规模并网需求。仿真结果表明,电压和电流对称的三相波形呈正弦分布,满足并网要求,且功率输出波形稳定,有功功率并网,功率因数高,这意味着并网逆变器能够高效稳定地运行,为电网提供稳定的电能。 总结以上内容,三相桥式闭环并网仿真技术通过优化逆变器的拓扑结构、采用先进的控制策略、设计高效的滤波器以及选用合适的调制技术,能够实现高功率等级、低谐波畸变率的电力并网,对提升电网稳定性、提高能源利用率具有重要意义。
2025-05-18 10:32:37 896KB 正则表达式
1
三相电压型SPWM逆变器控制设计及应用(原理图工程+源代码工程+仿真工程)”.pdf
2025-05-16 11:34:24 71KB
1
内容概要:本文详细介绍了基于ST平台下的STM32F103C8T6单片机的三相电压型SPWM逆变器控制设计及其应用。主要内容涵盖系统研究背景、硬件电路设计、单片机编程、PCB制作、软件系统框架设计、系统测试及仿真验证。通过该设计,实现了对电压和频率的精确调节,提升了电网的供电质量与可靠性。文中提供了完整的原理图工程、源代码工程、仿真工程、详细说明书和PPT等资料。 适合人群:电力电子工程师、嵌入式系统开发者、高校师生及相关领域的研究人员。 使用场景及目标:适用于需要高质量交流电输出的场合,如工业自动化、智能家居等领域。目标是提升电网供电质量,满足现代用电设备的需求。 其他说明:本文不仅提供了理论分析和技术细节,还包括了大量的实操指导,帮助读者全面理解和掌握三相电压型SPWM逆变器的设计与应用。
2025-05-16 11:32:10 3.96MB
1
分析开关死区对SPWM逆变器输出电压波形的影响,讨论考虑开关死区时的谐波分析方法,并导出谐波计算公式。用计算机辅助分析和实验方法对理想的和实际的SPWM逆变器进行对比研究,得出一些不同于现有理论的结果。
2025-05-14 08:06:24 274KB 变频|逆变
1
STM32全桥逆变电路原理图:IR2110驱动IRF540N MOS,最大50V直流输入,高交流利用率,谐波低于0.6%,SPWM波形学习好选择,STM32全桥逆变电路原理图:IR2110驱动IRF540N半桥设计,高效率SPWM波形,低谐波干扰立创电路设计分享,stm32全桥逆变电路 采用2个ir2110驱动半桥 mos采用irf540n 最大输入直流50v 输出交流利用率高 谐波0.6% 立创原理图 有stm32系列 想学习spwm波形的原理以及相关代码这个是个不错的选择,网上现成代码少,整理不易 ,stm32;全桥逆变电路;ir2110驱动;irf540n MOS;最大输入直流50v;输出交流利用率高;谐波0.6%;立创原理图;spwm波形原理及相关代码。,基于STM32的全桥逆变电路:IR2110驱动的SPWM波形原理与实践
2025-04-29 20:27:51 11.29MB
1
单片机SPWM正弦波数据发生器是一种用于在单片机系统中生成脉宽调制(SPWM)信号的工具。SPWM技术是电力电子领域广泛应用的一种模拟信号数字化的方法,尤其在逆变器、电机驱动等应用中扮演着重要角色。通过控制脉冲宽度的变化,SPWM可以实现交流电压或电流的调制,从而达到控制电机速度、电压或功率的目的。 我们来详细了解一下正弦波数据表。在SPWM生成过程中,正弦波数据表是一个关键元素,它存储了对应于正弦波不同角度的离散值。这些数值通常为二进制格式,用于控制开关器件(如IGBT或MOSFET)的导通和关断时间,以产生近似正弦波形的脉冲序列。正弦波数据表的精度和分辨率直接影响到SPWM输出波形的质量和效率。 正弦波数据的生成通常基于以下步骤: 1. **角度量化**:将一个完整周期的正弦波划分为多个等份,每个等份对应一个角度。 2. **采样点计算**:计算每个角度对应的正弦函数值,然后将其转换成适合单片机处理的二进制数。 3. **补偿与平滑**:由于实际硬件限制,正弦波数据可能需要进行平滑处理,以消除量化误差和噪声。 4. **编码**:将计算出的正弦值转换为相应的占空比,以便控制开关器件。 在“正弦波数据生成器.exe”这个程序中,用户可以设定不同的参数,比如频率、电压等级、分辨率等,来生成适应特定应用的正弦波数据表。生成的数据可以直接烧录到单片机的存储器中,供实时SPWM生成使用。 在实际应用中,单片机SPWM正弦波数据发生器的优势包括: - **灵活性**:能够根据需求调整输出波形的参数,适应各种应用场景。 - **效率高**:生成的数据可以直接驱动硬件,减少了中间环节,提高了系统效率。 - **精度可控**:可以通过调整采样点数量和编码方式来控制输出波形的质量。 单片机SPWM正弦波数据发生器是电力电子和自动化领域不可或缺的工具,它能够帮助工程师快速、准确地生成适用于单片机系统的SPWM波形,以实现高效、精确的电力转换和控制。通过理解其工作原理和使用方法,我们可以更好地设计和优化相关的控制系统。
2025-04-25 23:54:30 38KB
1
基于VSG单电流环控制与中点电位平衡的SPWM调制技术研究,同步发电机(VSG)单电流环控制,生成电流源信号,以电流幅值作为给定,最终形成单电流环控制,中点电位平衡控制,SPWM调制。 1.VSG电流环控制 2.中点电位平衡控制,SPWM调制 3.提供相关参考文献 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。 ,1.VSG电流环控制; 2.中点电位平衡控制; 3.SPWM调制; 4.单电流环控制; 5.生成电流源信号。,基于VSG的电流环控制与中点电位平衡的SPWM调制技术
2025-04-24 10:21:01 541KB ajax
1
三相三电平Vienna整流器调制技术及其控制的综合仿真研究:基于SPWM与SVPWM的中点电压平衡与功率因数控制分析,三相三电平Vienna整流器调制技术及控制策略的仿真研究——基于Plecs平台的SPWM与SVPWM对比分析,三相三电平vienna整流器SPWM和SVPWM调制仿真 基于plecs搭建 双PI控制 锁相环控制 中点电压平衡控制 功率因数为1 载波比较方式产生调制波 function搭 70yuan SPWM和SVPWM调制对比 谐波畸变率对比分析 电压利用率对比分析 电压平衡和不平衡控制对比 图1 仿真模型 图2 交流电压 电流 图3 直流侧电压 图4 不加平衡控制的上下电容电压 图5 加平衡控制的上下电容电压 ,三相三电平Vienna整流器; SPWM; SVPWM调制; PLECS搭建; 双PI控制; 锁相环控制; 中点电压平衡控制; 载波比较方式; 功率因数1; 调制波; 谐波畸变率对比; 电压利用率对比; 电压平衡与不平衡控制对比; 仿真模型图; 交流电压电流图; 直流侧电压图; 上下电容电压图。,三相三电平Vienna整流器:SPWM与SVP
2025-04-22 11:30:46 2.04MB
1
标题中的"STM32F103C8T6"指的是STMicroelectronics公司生产的一款高性能的ARM Cortex-M3微控制器,广泛应用于工业控制、医疗设备、汽车电子等领域。该芯片因其丰富的外设和较低的成本而受到许多开发者的青睐。而"SPWM波"则代表了正弦脉宽调制波形,是一种常用于变频器、逆变器等电力电子设备中的脉宽调制技术,其目的是通过控制开关器件的开关,生成与正弦波类似的输出波形。 结合标题和文件名称列表,可以推断出该压缩包文件很可能包含与使用STM32F103C8T6微控制器生成SPWM波形相关的资料。"亲测有效"这一描述则意味着文件中的内容或者方法已经在实践中得到了验证,具有一定的可信度和应用价值。 在文件内容方面,可能包括以下几个方面的知识点: 1. STM32F103C8T6微控制器的基本特性:包括其核心架构、性能参数、内存配置、时钟系统、电源管理等。这些信息是了解和使用该芯片的基础。 2. SPWM波形的原理和应用:介绍SPWM波形的生成原理、其在电力电子设备中的作用、以及如何根据不同的应用需求调整波形参数。 3. STM32F103C8T6与SPWM波形结合的具体实现方法:可能包含硬件连接图、必要的外围电路设计、软件编程逻辑、调制策略、调试过程及技巧。 4. 程序代码示例:文件中可能包含一段或多段用于生成SPWM波形的源代码,这些代码可能是用C语言编写,用于STM32F103C8T6的固件库函数。 5. 调试和测试结果:为验证"亲测有效"这一描述,文件中可能会有一部分专门描述如何对生成的SPWM波形进行测试,包括使用的测试设备、测试步骤和结果分析。 6. 优化和改进方案:在实际应用中,开发者可能对基础实现进行了优化,以提高系统的稳定性和效率。这部分内容可能会涉及硬件选型的考量、软件算法的改进等。 该压缩包文件可能是一个工程师在尝试将STM32F103C8T6微控制器用于生成SPWM波形时的完整解决方案,涵盖了从理论学习到实际操作的全过程,对相关领域的开发者具有较高的参考价值。
2025-04-09 11:21:56 6.92MB stm32
1
三电平储能变流器 Simulink 仿真,三电平储能变流器Simulink仿真研究:优化Q-U控制与SPWM载波层叠技术实现高效率功率控制,三电平储能变流器 simulink 仿真 基本工况如下: 直流母线电压:1500V 交流电网 :690 10kV 拓扑:二极管钳位型三电平逆变器 功率:300kW逆变,200kW整流 可实现能量的双向流动,整流、逆变均可实现 调制:可选SPWM载波层叠或svpwm调制 包含中点电位平衡,平衡桥臂实现 电压、电流THD<1%符合并网要求 双闭环控制: 外环:Q-U控制,直流电压控制 内环:电流内环控制 储能侧:双向Buck Boost电路,实现功率控制 ,默认 2018 版本 ,三电平储能变流器; Simulink仿真; 直流母线电压; 交流电网; 二极管钳位型三电平逆变器; 功率; 能量双向流动; 调制; 中点电位平衡; 双闭环控制; 储能侧; Buck Boost电路。,三电平储能变流器Simulink仿真工况研究
2025-04-08 14:05:24 5.37MB
1