使用RNN循环神经网络实现对爬取的京东评论信息进行情感分析 其中包括源代码、数据集、停用词等
2023-03-22 12:02:45 3.41MB 深度学习 NLP 循环神经网络 文本分类
1
基于训练好的语言模型(使用gensim的word2vecAPI),编写了一个情感分类模型,包含一个循环神经网络模型(LSTM)和一个分类器(MLP)。首先,将一个句子中的每个单词对应的词向量输入循环神经网络,得到句子的向量表征。然后将句向量作为分类器的输入,输出二元分类预测,同样进行loss 计算和反向梯度传播训练,这里的 loss 使用交叉熵 loss。
2023-03-19 15:08:18 12KB nlp pytorch lstm rnn
1
非常好的机器学习深度学习课件,(十三)RNN和LSTM.pptx
2023-03-19 10:31:52 3.34MB 机器学习 深度学习
1
ChattingRobot_RNN-master.zip
2023-03-16 11:48:12 36KB 文本分类 情感分析
1
灾难响应消息分析项目-集成和RNN方法 在本笔记本中,我探索了三种分析文本数据以预测文本主题的方法。 这是通过数据完成的,中有来自灾难幸存者的已编译文本消息,目的是对它们进行分类,以了解处理灾难时的优先级。 文献资料 以下项目是Udacity的数据科学纳米学位计划的一部分,该计划提供了原始数据库。 该信息如图8所示。 表格中分析的文本消息具有三种类型,分布如下所示: 需要注意的另一重要事项是所分析的文本与灾难相对应。 在下面您可以找到不同文本中最常见的10个单词: 在该项目中,您将发现两个部分: 应用程序:在项目的“应用程序”部分中,有一个Web应用程序,它使用分析后的信息来制作图形和预测。 该预测是通过模型完成的,该模型是根据Udacity提供的信息进行训练的。 Udacity提供的Web应用程序模板。 笔记本:在笔记本中,您还可以找到随机森林模型,预处理和图形。 它还包含一个
2023-03-15 20:52:26 700KB JupyterNotebook
1
新手入门必备!可以尝试一下。里面可以直接运行,把自己的数据集替换掉即可,也可以私信我替换!
2023-03-10 15:05:55 277KB NARX
1
新手入门必备,可以尝试一下,这里可以直接用自己的数据集替换掉就好了,也可以私信我进行替换!
2023-03-10 15:03:27 275KB 深度学习 时间序列预测
1
对下载的IMDB数据集中的test和train分别进行预处理从而方便后续模型训练,代码为PreProcess.py。预处理主要包括:大小写转化、特殊字符处理、stopwords过滤、分词,最后将处理后的数据存储为CSV格式,以方便后续调试。借用了nltk的 stopwords 集,用来将像 i, you, is 之类的对分类效果基本没影响但出现频率比较高的词,从训练集中清除。
2023-03-01 16:29:27 1KB pytorch RNN lstm 情感分类
1
matlab心电图程序代码基于呼吸暂停-心电图的OSA检测代码 该项目包括用于呼吸暂停ECG的预处理方法和用于每段OSA检测的LSTM-RNN模型。 介绍 如果要使用此程序,应首先下载Apnea-ecg数据库。 在这里,我们提供了一个下载链接,代码为:8fuq。 用法 然后,按照以下步骤操作,您将获得OSA检测模型。 在python中使用matlab函数。 遵循官方文件。 运行preprocessOfApneaECG.mit2Segments.py 。 此python文件将Apnea-ECG数据库转换为每分钟的ECG段,包括训练集(a01-a20,b01-b05,c01-c10)和测试集(x01-x35)。 不要忘记在mit2Segments.py中设置路径信息。 运行preprocessOfApneaECG.preProcessing.py 。 该python文件处理每分钟的ECG片段,包括ECG去噪,从ECG提取RRI,RAMP和EDR信号,在RRI和RAMP上进行平滑和样条插值以及对EDR信号进行下采样。 此外,我们根据RRI将这些细分分为两种:噪声和清晰。 运行produceD
2023-02-25 22:07:26 363.93MB 系统开源
1
训练 1.处理train 数据集 python3 ./utils/make_data.py 2.训练网络 python3 train.py 测试 1.加载模型,将训练好的模型放入./model/中 2.向test_img_list中添加需要测试的图片列表 test_img_list = ['/home/tony/ocr/test_data/00023.jpg'] 3.运行模型 python3 test_crnn.py
2023-02-18 10:48:29 1.97MB OCR CRNN RNN 中文识别
1