COMTRADE(Common Format for Transmission Data Exchange)是电力系统中广泛使用的标准格式,用于记录和交换电气设备的保护和控制系统的数据,特别是录波信息。这个标准由国际电工委员会(IEC)制定,具体为IEC 61850标准的一部分。61850标准是为了实现变电站自动化系统的互操作性和数据交换而设计的,它定义了通信协议、数据模型和应用服务,以促进智能电网的发展。 61850录波文件是按照这一标准生成的,它包含了在电力系统异常或故障时记录的各种电气参数,如电压、电流、频率、功率等。这些信息对于分析电网的运行状况,诊断故障原因以及优化电力系统性能至关重要。 MMS(Management Message Service)是61850标准中的一个关键部分,它提供了一种在网络中传输管理信息的方法,包括读取和写入数据、订阅事件等操作。MMS基于ISO/OSI七层模型,使用TCP/IP协议进行网络通信。在61850上下文中,MMS用于设备间的数据交换,例如变电站的IED(Intelligent Electronic Device)之间。 "FRESH61L"可能是61850标准中的一种特定类型的数据对象或者数据集,它可能涉及到实时或历史的电气测量值。然而,具体的含义需要参考61850规范以获取详细信息。 在"COMTRADE录波_comtrade_fresh61l_mms 61850"这个描述中,我们看到的是一个结合了COMTRADE标准、61850协议、MMS服务以及"FRESH61L"数据集的录波文件示例。这个文件可能包含了通过MMS协议从61850兼容设备收集的"FRESH61L"相关的测量数据,然后以COMTRADE格式存储,方便后续分析和处理。 在实际应用中,分析这样的录波文件通常需要专业的软件工具,这些工具能够解析61850 MMS报文,提取出相关的电气参数,并以易于理解的方式展示。这些参数可以用来进行故障回溯、保护系统校验以及电网性能评估。 "COMTRADE.zip_61850录波文件_COMTRADE录波_comtrade_fresh61l_mms 61850"是一个典型的电力系统监测数据包,它结合了先进的通信标准和数据格式,反映了现代电力系统中高度自动化和智能化的趋势。通过深入理解和解析这些数据,电力工程师能够更好地理解电网行为,确保电力系统的安全稳定运行。
2024-07-17 16:02:06 341KB comtrade
1
本篇文章全面介绍了电子负载的原理,尤其对电子负载在LED测量过程中存在的误区进行重点介绍。不仅如此,在本文当中还提出了一些可行的解决方法,以便得到较为稳定的电流数据。希望大家在阅读过本篇文章之后能够有所收获。 在LED电源测试中,电子负载扮演着至关重要的角色。然而,使用电子负载的过程中存在一些常见的误区,这可能导致测试结果的不准确,甚至影响LED电源产品的质量和安全性。本文旨在深入解析这些误区并提供解决方案。 电子负载的CV(Constant Voltage,恒定电压)模式是LED电源测试的基础。在CV模式下,电子负载通过电压负反馈电路来维持LED电源输出电流的稳定,以保持电容上的电荷平衡,从而达到恒定电压。决定CV精度的关键因素有两个:负载的带宽和LED电源输出电容的大小。如果负载带宽不足以跟踪电流变化,可能会导致输出电压震荡,增加电流纹波,影响测试结果的准确性。 负载带宽不足时,LED电源输出电流纹波高的问题尤为突出。此时,负载输入电压的剧烈变化会使LED输出电容进行大电流充放电,增大电流纹波。因此,选择具有足够带宽的电子负载至关重要。满量程电流上升时间是衡量负载带宽的一个间接指标,数值越小,表示负载响应速度越快,带宽越高。 此外,一些用户错误地认为数据跳动小的负载更适合LED测试。实际上,数据稳定性可以通过增加数据滤波时间来实现,但这可能导致低采样率下的测量结果失去准确性。为了确保测量的精确性,提高数据采样率才是关键。 在LED电源测试中,还需要关注以下几个要点: 1. 满量程电流上升时间:这是保证准确带载的基础,应尽可能选择数值较小的负载。 2. 数据采样率:高采样率能提供更准确的测量结果,应优先考虑。 3. Vpp(电压峰峰值)实时显示:Vpp的变化可以帮助判断测量数据的可信度。 4. 滤波速度调节功能:虽然可以改善数据稳定性,但不应过度依赖,因为过度滤波可能导致数据失真。 市场上有些号称专门用于LED电源测试的电子负载,可能实际上是通用电子负载改造而来,其带宽和采样率可能并不符合要求。这些负载可能会通过增加滤波强度、调整电压反馈环或内部加装电容来改善电流稳定性,但这可能导致测量结果的不可靠。 正确理解和使用电子负载对于LED电源的测试至关重要。在选择和操作电子负载时,应充分考虑带宽、采样率、Vpp监测和滤波等因素,以确保测试的准确性和有效性。同时,避免被市场上不合规的“专用”电子负载误导,确保选用具备高性能指标的设备,才能有效地评估和优化LED电源的性能。
1
STM32F103C8T6是意法半导体(STMicroelectronics)生产的一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计,包括电机控制。在本项目中,我们将讨论如何使用STM32F103C8T6生成互补的带死区的SPWM(Sinusoidal Pulse Width Modulation)波形。 SPWM是一种广泛应用的脉宽调制技术,常用于逆变器和交流电机驱动。它通过改变脉冲宽度来模拟正弦波,从而调整输出电压的平均值。在电机控制中,为了保证功率开关器件的安全,通常会在两个互补输出之间设置一定的“死区时间”,避免两个开关同时导通,造成直通短路。 生成SPWM波的步骤如下: 1. **频率设定**:需要确定SPWM的基频,这将决定调制信号的频率,通常与逆变器的工作频率一致。 2. **调制度计算**:调制度是决定SPWM波形幅度的关键参数,它与占空比直接相关,决定了输出电压的大小。 3. **正弦波生成**:可以使用查表法或者数学函数(如CORDIC算法)生成与调制度对应的正弦波采样点。 4. **比较器设置**:将正弦波采样点与三角载波进行比较,根据比较结果生成PWM脉冲。 5. **死区时间插入**:在两个互补的PWM输出之间插入一定时间的死区,防止开关器件同时导通。 在STM32F103C8T6上实现这些功能,主要涉及以下寄存器和外设: - **TIM定时器**:比如TIM3或TIM4,它们可以用来生成PWM波形。配置定时器的计数器预装载值以实现所需的基频,设置自动重载值来确定PWM周期。 - **CCRx捕获/比较寄存器**:设置PWM的占空比,根据正弦波采样点与三角波比较结果更新这些寄存器。 - **死区时间寄存器(DTG)**:在TIMx_BDTR寄存器中配置死区时间,确保死区时间在每个PWM周期内正确插入。 - **输出极性(OPM)和输出使能(OE)**:确保互补输出的正确配置,避免短路。 - **中断和DMA**:如果需要实时更新SPWM,可以利用中断或DMA来处理新的正弦波采样点。 文件名中的`.uv*`文件可能是Keil uVision项目文件,它们包含了项目的配置信息、编译设置以及工程结构。而`Hardware`目录可能包含了电路设计的相关资料,例如原理图和PCB布局。 总结来说,生成互补的带死区的SPWM波是通过STM32的定时器功能实现的,涉及到寄存器配置、比较器操作以及死区时间设置。实际应用中,还需要结合具体的硬件电路和软件框架进行详细的设计和调试。
2024-07-11 18:33:03 10.35MB spwm stm32
1
介子的光子跃迁形状因子FÏα(Q2)的低能和高能行为分别对介子波函数的横向和纵向分布敏感。 因此,对FÏα(Q2)的仔细研究应为介子波函数的性质提供有用的约束。 在本文中,我们提出对CELLO,CLEO,BABAR和BELLE合作报告的FÏQ(Q2)数据的组合分析。 通过使用最小二乘法进行。 通过使用BELLE和CLEO合作的组合的测量,可以将介子波函数的纵向和横向行为固定到一定程度,即,我们可以得到β[0.691,0.757] GeV和Bβ[0.00,0.235] 对于Pχ2≥90%,其中β和B是方便的介子波函数模型的两个参数。 注意,如文献中所建议的那样,在适当选择参数的情况下,这种介子波函数的分布幅度可以模仿各种纵向行为。 我们观察到CELLO,CLEO和BELLE数据彼此一致,它们都喜欢渐近式分布幅度。 而BABAR数据则倾向于更宽的分布幅度,例如CZ型。
2024-07-05 16:18:06 953KB Open Access
1
永磁同步电机旋转高频注入初始位置辨识simulink仿真+ 永磁同步电机脉振正弦注入初始位置辨识simulink仿真+ 永磁同步电机脉振方波注入初始位置辨识simulink仿真+,三种高频注入的相关原理分析及说明: 永磁同步电机高频注入位置观测:https://blog.csdn.net/qq_28149763/article/details/136349886?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136349886%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-07-03 15:18:29 88KB 电机控制 simulink PMSM
1
整数提升5/3小波变换(Integer Lifted Wavelet Transform, ILWT)是一种在数字信号处理领域广泛应用的算法,特别是在图像压缩和分析中。它通过使用提升框架,以更高效的方式实现离散小波变换(DWT)。Matlab作为强大的数值计算环境,提供了方便的工具来实现这一过程。下面我们将详细探讨ILWT的基本原理、Matlab中的实现方法以及如何进行分解和重构。 **一、整数提升5/3小波变换** 5/3小波变换是一种具有较好时间和频率局部化特性的离散小波变换类型,其主要特点是近似系数和细节系数的量化误差较小,因此在数据压缩和信号去噪等方面有较好的性能。提升框架是5/3小波变换的一种实现方式,相比传统的滤波器组方法,提升框架在计算上更为高效,且更容易实现整数变换。 提升框架的核心是通过一系列简单的操作(如预测和更新)来实现小波变换。在5/3小波变换中,这些操作包括上采样、下采样、线性组合和舍入。提升框架的优势在于,它可以实现精确的整数变换,这对于需要保留原始数据整数特性的应用至关重要。 **二、Matlab实现** 在Matlab中,实现整数提升5/3小波变换通常涉及编写或调用已有的M文件函数。根据提供的文件名`decompose53.m`和`recompose53.m`,我们可以推测这两个文件分别用于执行分解和重构过程。 1. **分解过程(decompose53.m)** - 分解过程将原始信号分为多个尺度的近似信号和细节信号。对输入信号进行上采样,然后通过预测和更新操作生成不同尺度的小波系数。在5/3小波变换中,通常会生成一个近似系数向量和两个细节系数向量,分别对应低频和高频部分。 2. **重构过程(recompose53.m)** - 重构是将小波系数反向转换回原始信号的过程。这涉及到逆向执行提升框架中的操作,即下采样、上采样、线性组合和舍入。通过重新组合各个尺度的系数,可以恢复出与原始信号尽可能接近的重构信号。 **三、代码实现细节** 在Matlab中,可以使用循环结构来实现提升框架的迭代,或者使用内建的小波工具箱函数,如`wavedec`和`waverec`,它们封装了提升框架的具体实现。不过,由于题目中提到的是自定义的`decompose53.m`和`recompose53.m`,我们可能需要查看这两个文件的源代码来了解具体实现步骤。 Matlab提供了一个灵活的平台来实现整数提升5/3小波变换,使得研究人员和工程师能够快速地进行信号处理和分析实验。通过理解ILWT的原理和Matlab中的实现,我们可以更好地利用这种技术来解决实际问题,例如图像压缩、噪声消除和数据压缩等。
2024-07-03 11:23:15 1KB Matlab 提升小波变换
1
内插双正交整数小波变换(IWT)支持高效的图像无损压缩并且具有较低计算复杂度,但是为了保证整数输出,变换中包含了浮点数缩放因子并额外增加了三个提升步骤,降低了整数小波变换对图像的有损压缩效率。提出了一种基于优化因子的静止图像编码算法。在小波变换过程中,新算法利用一组基于2的整数次幂的分数代替浮点数缩放因子,消除变换中的浮点数乘法操作,降低变换的计算复杂度。实验结果表明,采用优化因子的图像压缩算法不仅有效降低了编码中小波变换的计算复杂度,而且获得了与采用浮点数缩放因子的内插双正交整数小波变换相近的峰值信噪比。
1
通过组合两种颜色的激光场进行准平行光子-光子散射是在实验室中产生低质量场共振状态的一种方法。 在该系统中,可以在真空中通过四波混合过程探测共振。 通过将9.3 J / 0.9 ps钛蓝宝石激光器和100 J / 9 ns的Nd:YAG激光器组合在一起,对标量场和伪标量场进行了搜索。 没有观察到明显的四波混合信号。 我们分别在0.15 fieldseV以下的质量区域中以95%的置信度为标量和伪标量场提供了耦合质量关系的上限。
2024-07-02 10:00:15 897KB Open Access
1
为了解决声表面波滤波器插损太大,造成有用信号衰减严重,弥补插损又会引起底部噪声抬高的问题。该文设计了一种用LC集总元件实现的窄带带通滤波器,其特点是插入损耗小,成本低,带外衰减大,较好解决了因声表面波滤波器插损大而引起的一系列问题,不会引起通道底部噪声的抬高。仿真结果证明了该设计方案的可行性。
2024-07-02 09:49:58 551KB LC滤波器 声表面波滤波器
1
小波基的构造,每步均有说明,讲解很详细,值得学习(Wavelet construction, each step that has to explain in great detail, it is worth learning)
2024-07-01 10:14:53 2KB matlab 开发语言