车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。 纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(192010202) 代表有1920个时间段,1020个区域,2个特征分别为区域的入流量与出流量
2024-06-01 21:17:29 1.11MB 深度学习 python 数据集
1
python数据分析与可视化 # 导入matplotlib.pyplot,并使用"plt"作为该模块的简写 import matplotlib.pyplot as plt # 导入pandas,并使用"pd"作为该模块的简写 import pandas as pd # 读取路径为 "/Users/书店图书销量和广告费用.csv" 的CSV文件,并将结果赋值给变量data data = pd.read_csv("/Users/书店图书销量和广告费用.csv") # 通过 rcParams 参数将字体设置为 Arial Unicode MS plt.rcParams["font.sans-serif"] = "Arial Unicode MS"
2024-05-31 01:25:33 3KB python 数据分析 可视化
1
Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档
2024-05-24 11:59:05 7.77MB python 数据分析 数据可视化 numpy
1
"股票数据可视化" 是一项基于Python语言的数据分析工作,旨在将股票市场的数据可视化成易于理解的图表和图形。通过使用Python的工具和库,股票数据可视化的工作者可以从各类数据源中提取出市场数据,并使用数据可视化技术制作成各种形式的图表和报告,其中包括股票价格趋势图、K线图、成交量柱状图等。通过这些图形的展示,股票数据可视化工作者可以帮助市场参与者更好地理解股票市场的走势趋势,以及市场进一步发展的趋势。
2024-05-23 14:20:39 318KB python 数据分析 数据可视化 课程设计
1
主要介绍了python3常用的数据清洗方法(小结),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2024-05-22 11:10:36 246KB python3 数据清洗 python 数据清洗
1
Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档
2024-05-18 13:30:40 7.77MB python 数据分析 可视化 numpy
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-05-17 16:46:49 550KB 爬虫 python 数据收集
1
基于天池淘宝母婴用品数据的可视化分析
2024-04-22 17:25:58 625KB python 数据可视化 统计分析
1
kriging模型,python编写,带数据集
2024-04-17 18:38:23 4KB python 数据集
1
一、实验目的 1、复习主成分分析的原理和算法 2、使用sklearn库函数实现对鸢尾花数据集的主成分分析,观察主成分分析的作用 3、(选做)解读基于主成分分析和支持向量机的人脸识别程序 二、实验步骤 1、导入鸢尾花数据集,查看数据分布情况: 选取三个特征查看数据分布情况 选取两个特征查看数据分布情况 2、使用主成分分析函数对鸢尾花数据集降维 3、对降维后的数据集和原始数据集分别进行线性判别分析,比较分析的准确率 4、(选做)使用数值计算方法实现步骤2,深入了解主成分分析的实现过程 三、实验结果与讨论 1、简单清楚的叙述主成分分析的过程 2、绘制人脸识别程序的流程框图
2024-04-17 17:37:14 1.45MB python 数据集 主成分分析 人脸识别
1