基于LSTM神经网络模型的日志异常检测 主要基于Deeplog实现 DeepLog - Anomaly Detection and Diagnosis from System Logs through Deep Learning (部分paper来源于知网,请尊重版权~)
2024-05-24 13:36:59 82.2MB Python
1
1.Python实现ARIMA-LSTM时间序列预测(完整源码和数据) anaconda + pycharm + python +Tensorflow 注意事项:保姆级注释,几乎一行一注释,方便小白入门学习! 2.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 3.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4.作者介绍:某大厂资深算法工程师,从事Matlab、Python算法仿真工作8年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+
2024-05-16 21:05:37 48KB python lstm
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:49 41KB 神经网络 lstm
1
基于粒子群算法优化长短期记忆网络(PSO-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:35 26KB 网络 网络 matlab lstm
1
基于改进PSO-LSTM神经网络的气温预测.pdf
2024-05-13 10:49:10 1.18MB
1
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:47:04 3.19MB 神经网络 lstm
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
python编写的简单程序,一共只有130多行,但是应付老师绰绰有余:) 实验:基于LSTM的命名实体识别 数据处理 给每个实体类型进行编号、给每个单词进行编号 文本填充 使用标识符,将所有序列处理成同样长度 训练流程 给每个输入和其对应编号建立一个张量 构成训练批 输入LSTM单元 输入全连接层 使用sorftmax或其他分类器进行预测 模型构建 pytorch自带LSTM类/其他工具也可以/自己编码也可以
2024-05-08 15:06:16 1.85MB 自然语言处理 pytorch pytorch 课程资源
1
基于pytorch的LSTM时间序列预测的研究(交通流量预测)
2024-05-03 10:27:12 5.04MB pytorch pytorch lstm
1
CNN-LSTM组合预测模型,输入数据是多列输入,单列输出的回归预测模型,代码内部有基本注释,替换数据就可以使用,版本需求是2020及以上
2024-05-01 17:54:24 1.77MB lstm
1