LINEAR SYSTEM THEORY AND DESIGN, Third Edition, Chi-Tsong Chen 线性系统理论第三版,Chi-Tsong Chen著
2023-03-06 02:13:07 3.13MB 线性系统理论
1
Linear algebra and its applications 麻省理工 线性代数公开课教材 可以配合视屏使用
2023-03-02 15:55:49 13MB 线性代数 机器学习 深度学习 数学
1
This book is supposed to teach you methods of numerical computing that are practical, efficient, and (insofar as possible) elegant. We presume throughout this book that you, the reader, have particular tasks that you want to get done. We view our job as educating you on how to proceed. Occasionally we may try to reroute you briefly onto a particularly beautiful side road; but by and large, we will guide you along main highways that lead to practical destinations.
2023-03-01 00:23:43 20.55MB Linear Algeb Interpolatio Integration
1
matlab lm算法代码非线性算法 梯度下降,高斯牛顿法和LM法C ++代码和Matlab代码
2022-12-30 01:06:37 2KB 系统开源
1
线性代数的许多应用都需要时间来发展。在一个小时内解释它们并不容易。教师和作者必须在使理论 完整与加入现代应用之间做选择。通常是理论获胜,然而本节是个例外。本节解释了上世纪最有价值的 数值算法。 我们想快速地乘上傅里叶矩阵 F 与它的逆 F−1。这通过快速傅里叶变换完成。一个普通乘积 Fc 用到 n2 次乘法(F 具有 n2 项)。FFT 仅需要 n 乘以 12 log2 n 次乘法。我们将看到这是如何实现的。 FFT 彻底改变了信号处理。整个行业都因该思想而迅速发展。电气工程师是第一个知道其中区别 的人——当他们遇见你时会取你的傅里叶变换(假设你是个函数)。傅里叶的思想是将 f 表示为谐波 ckeikx 的和。在频率空间中通过系数 ck 观察该函数,而非在实际空间中通过其值 f(x) 来观察它。c 与 f 间的前向、后向通道是由傅里叶变换实现。快速通道由 FFT 实现。中文翻译Introduction to Linear Algebra, 5th Edition 9.3节 单位根与傅里叶矩阵 二次方程有两个根(或者一个重根)。n 次方程具有 n 个根(算上重复次数)。这是代数基本定
2022-12-26 15:26:20 1.22MB 线性代数 数学
1
卡尔曼的论文,卡尔曼滤波器第一次在此论文中提出。
2022-12-25 17:11:12 167KB kalman filter
1
matlab代码续行螺旋波线性非线性理论 代码(EZ-Spiral和Matlab)可重现[Sandstede&Scheel(2020)]中的计算。 使用说明 该存储库提供了由Dwight Barkley编写的代码,这些代码用于解析螺旋波及其光谱。 有关所用方法的详细信息,请参见和[Sandstede&Scheel(2020)]。 这些代码是按代码和模型分别组织的。 所有直接数值模拟均使用EZ-Spiral完成,并且代码位于以“ dns”开头的文件夹中。 使用Matlab在以“ matlab”开头的文件夹中进行螺旋波的连续性及其频谱的计算。
2022-12-19 16:10:38 133.29MB 系统开源
1
1.基本概念 **线性回归(Linear Regression)**是一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。 2.特点 优点:结果具有很好的可解释性(w直观表达了各属性在预测中的重要性),计算熵不复杂。 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型数据 3.自己实现的线性回归 3.1 简单线性回归 1.利用最小二乘法得到的系数 2.用简答随机数模拟的方法来搭建简单线性回归 import numpy as np import matplotlib.pyplot as plt x =
2022-12-17 20:03:50 639KB assert linear mean
1
Python机器学习 通用机器学习算法的Python代码
1
最小二乘
2022-11-30 20:32:52 394KB 最小二乘
1