1、资源内容:基于Matlab实现Simulink建模与仿真(源码+数据).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-09-04 13:58:37 93KB matlab Simulink建模与仿真
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。 对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。 针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。通过调整聚类数优化损失函数,验证了初始设定的合理性。 在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。 对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。 总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024-09-02 15:54:30 2.45MB 数学建模 随机森林
1
在本文中,作者探讨了如何利用MATLAB和Pro/Engineer (Pro/E) 两款软件在钢丝绳建模中的应用,为矿井提升中的重要部件钢丝绳提供了一种新的建模技术。钢丝绳由于其特定的空间结构和应用领域的重要性,需要精确的建模以便于结构分析。本文的技术路线是在MATLAB中编写源程序,处理数学方程生成钢丝绳的轨迹数据,然后将这些数据导出为Pro/E能够识别的格式,从而完成钢丝绳的建模。 我们需要了解Pro/E软件的特性。Pro/E是一款广泛应用于三维设计的软件,拥有丰富的库和精准的计算功能,能够完整地表达产品外形、装配及其功能。它支持多个部门协作在同一产品模型上进行工作,但在复杂的三维设计,尤其是在生成严格数学描述的复杂曲线时,Pro/E的能力会受到一定的限制。这是因为Pro/E对于生成曲线方程的函数支持有限,导致其在设计复杂度上有所不足。 MATLAB,作为一款功能强大的数学软件,提供上百个预定义命令和函数,以及强大的二维和三维图形工具。它还有25个不同工具箱适用于特殊应用领域,使得MATLAB成为应用广泛的工具之一。特别是,MATLAB强大的函数库和数据处理能力,可以处理复杂的曲线方程,并将结果导出。 文中以IWRC1X19型钢丝绳为例,详细介绍了钢丝绳的结构特征,包括断面形状、捻法、股数、钢丝数、以及绳股和钢丝的排列方式。IWRC1X19钢丝绳由中心钢丝和两层分别为6根和12根绕中心钢丝作同心捻转的侧线钢丝构成,其中钢丝直径均为2mm,螺旋升角为76.5度,螺距为52.3mm。钢丝绳的各部名称被详细阐释,包括绳芯、绳股、股芯线、股芯线螺旋半径和侧线钢丝等。 接下来,文章通过MATLAB程序来生成钢丝绳中心钢丝和侧线钢丝的曲线方程。根据公式,作者编写了MATLAB代码,将钢丝绳各部分的数学模型数据转换成Pro/E可识别的ibl格式文件。作者在MATLAB中编写了两个关键部分的代码,即中心钢丝和侧线钢丝的代码。这些代码将生成必要的曲线数据,并将数据保存为ibl文件,以便在Pro/E中使用。 在MATLAB程序中,作者首先定义了中心钢丝曲线方程和侧线钢丝曲线方程。中心钢丝曲线方程描述了钢丝绳中心钢丝的形状,而侧线钢丝曲线方程则涉及到螺旋线的性质,其中螺旋线螺距为参数之一。通过编写MATLAB代码,可以生成大量点的数据矩阵,并将这些数据保存为ibl文件。这些文件包含三维空间中的点坐标,用于在Pro/E中创建钢丝绳模型的轨迹曲线。 最终,这些曲线被用于生成Pro/E中的钢丝绳三维模型。在这个建模过程中,MATLAB和Pro/E互补,MATLAB负责数学计算和数据处理,而Pro/E则利用这些数据完成模型的可视化和进一步的设计分析工作。 通过本文的介绍,我们可以了解到MATLAB在数据处理和复杂数学计算中的强大能力,以及Pro/E在三维设计和模型可视化方面的专业性。将两者结合起来使用,在工程领域尤其是复杂结构建模方面,可以大大拓展设计能力的边界。此外,这种混合使用不同专业软件的方法,也为工程师提供了灵活应对各种设计挑战的新思路。
2024-08-30 20:03:37 898KB MATLAB 数据分析 数据处理 论文期刊
1
《Python 数学实验与建模》是一本由司守奎和孙玺菁合著的书籍,专注于使用Python语言进行数学实验和模型构建。这本书旨在帮助读者掌握如何利用Python的强大功能来解决数学问题,进行数值计算,以及构建各种数学模型。在Python的世界里,数学不再仅是抽象的概念,而是可以通过编程实现的实体,这为学习者提供了全新的视角和工具。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的库支持,成为科学计算和数据分析的理想选择。在数学实验方面,Python可以用来执行各种计算任务,如线性代数、微积分、概率统计、复数运算等。例如,NumPy库提供了矩阵和数组操作,SciPy则包含了一系列用于科学计算的函数,而matplotlib则能帮助我们可视化数据,使复杂的结果一目了然。 在建模方面,Python的灵活性使得它可以应用于众多领域,如经济学、物理学、生物学等。例如,通过模拟和优化算法,可以建立经济模型预测市场走势;在物理学中,Python可以用来求解复杂的动力学系统;在生物学领域,可以构建种群动态模型,研究物种之间的相互作用。 书中的数据文件可能包含了用于演示和练习的各种实例数据。这些数据可能是数值数组、图像、文本或者更复杂的结构,它们将配合书中的代码示例,让读者亲自动手实践,体验Python在数学实验和建模中的应用。 例如,一个可能的数据文件可能是"线性回归.csv",其中包含了用于线性回归分析的样本数据。你可以使用pandas库读取这个CSV文件,然后用scikit-learn库构建和训练线性回归模型。通过这样的实验,你可以理解线性关系的统计学意义,并学习如何评估模型的性能。 另一个可能的文件是"混沌系统.txt",它可能包含了描述混沌系统(如洛伦兹吸引子)的参数。你可以使用这些参数来运行数值模拟,观察系统的动态行为,从而深入理解混沌理论。 这本书结合Python和数学,提供了一个强大的学习平台,让读者能够探索数学的深度,同时提升编程技能。通过实际操作和分析数据,你将不仅理解理论概念,还能掌握实用的解决方案,为未来的数学研究或相关工作打下坚实基础。
2024-08-30 13:17:45 29.62MB python
1
化处理,采用 Pearson 相关系数和 Wasserstein 距离来分析饮食习惯与健康的关联。主成分分析法被用来确定各个评价指标的权重,通过多目标模糊综合评判模型,得出居民饮食习惯的综合评判值,进而揭示存在的问题。 对于问题二,我们需要探讨生活习惯和饮食习惯是否与个体的社会属性(如年龄、性别、婚姻状况、文化程度、职业等)相关。通过量化这些生活习惯和饮食习惯的评价指标,然后计算与个人属性的协方差矩阵和相关系数,可以识别出各因素之间的相关性和相关程度。 问题三关注的是慢性病与生活习惯多个因素之间的关系。通过灰色关联分析法,我们可以量化吸烟、饮酒、饮食习惯、生活习惯、工作性质和运动等因素与常见慢性病的相关程度。接着,采用二分类 BP 神经网络构建模型,揭示这些因素与慢性病发病的关系。 至于问题四,我们基于问题三的结果,对居民进行分类,比如分为患病但饮食健康、患病且饮食不健康、不患病且饮食健康和不患病但饮食不健康四类。利用支持向量机(SVM)进行二分类,为每类居民提供定制的健康改善建议,包括膳食调整和运动方案。此外,通过灵敏度检验确保模型的稳定性和有效性。 总结来说,这篇论文运用了多种数学建模方法,包括主成分分析、模糊综合评判、灰色关联分析和神经网络,对城市居民的健康状况进行了深度研究。通过量化和分析饮食习惯,找出不合理之处;探究生活习惯和饮食习惯与个体特征的联系;接着,分析慢性病与生活习惯多因素的关联;为不同健康状态的居民提供个性化建议。这些方法的应用有助于理解影响城市居民健康的复杂因素,并为公共卫生政策的制定提供科学依据。关键词涉及的灰色关联分析法、主成分分析法、多目标模糊综合评判法和二分类 BP 神经网络,都是解决此类问题的关键工具,它们的结合使用展示了数学建模在解决实际问题中的强大能力。
2024-08-27 10:18:30 1.29MB 毕业设计
1
1、资源内容:历届数学建模比赛题汇整理资料和一些思路,源码参考。适用于打算参加数学建模思路参考及一些算法参数等。 2、适用人群:计算机,电子信息工程、数学等专业的学习者,作为java实战项目,课程设计,毕业设计“参考资料”参考学习使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。
2024-08-26 18:18:43 688KB 数学建模
1
在医疗领域,血管支架是一种用于治疗血管狭窄或阻塞的医疗器械。在设计和开发过程中,进行仿真是一个至关重要的步骤,以确保支架的安全性和有效性。本主题将详细探讨使用SolidWorks和Abaqus软件进行血管支架建模仿真的过程及其重要性。 SolidWorks是一款强大的三维机械设计软件,广泛应用于产品设计和工程分析。在血管支架的设计阶段,SolidWorks可以帮助工程师创建精确的三维模型,包括支架的几何形状、网孔结构以及材料属性。设计师可以通过SolidWorks的直观界面快速迭代设计,优化支架的尺寸和形状,以适应不同的血管条件。 接着,Abaqus作为一款先进的非线性有限元分析软件,被用于进行复杂的结构和热力学仿真。在血管支架的仿真中,Abaqus可以模拟支架在体内环境下的行为,如在血管内扩张、与血管壁的相互作用、载荷下的变形等。通过设置适当的边界条件和加载情况,可以分析支架的力学性能,例如应力分布、应变状态和位移,从而评估其在实际应用中的稳定性和耐用性。 在血管支架的建模过程中,有以下几个关键步骤: 1. **几何建模**:使用SolidWorks创建支架的三维几何模型,包括其网孔结构和支撑杆的细节。 2. **材料定义**:根据支架材料(如不锈钢、钴铬合金或生物可降解材料)的物理属性,在Abaqus中设置相应的材料模型。 3. **网格划分**:对模型进行网格划分,选择合适的单元类型(如壳单元或实体单元)以保证计算精度。 4. **边界条件**:设定仿真中的约束和载荷,例如模拟支架在球囊扩张过程中的压力或血管壁的摩擦力。 5. **求解与后处理**:运行Abaqus求解器进行计算,并通过后处理工具分析结果,如查看应力云图、应变分布图等。 6. **参数优化**:基于仿真结果,可能需要调整支架的设计参数,如网孔大小、厚度或形状,以改善其性能。 通过这种仿真流程,工程师可以预测和解决潜在问题,如过度变形、应力集中或释放后的再狭窄风险,从而提高支架的设计质量。同时,仿真还能减少实物试验的数量,降低研发成本,缩短产品上市时间。 在提供的文件"血管支架仿真"中,可能包含了使用SolidWorks和Abaqus进行血管支架建模仿真的详细步骤、参数设置、结果分析以及可能的设计优化方案。深入研究这些文件,将有助于深入理解这一领域的技术细节和最佳实践。
2024-08-23 17:38:07 84.13MB solidworks abaqus
1
阿伏加德罗 Avogadro是一款先进的分子编辑器,设计用于计算化学,分子建模,生物信息学,材料科学及相关领域中的跨平台使用。 它提供了灵活的呈现和强大的插件体系结构。 跨平台:适用于Windows,Linux和Mac OS X的分子构建器/编辑器。 免费,开源:易于安装,所有源代码都可以在GNU GPL下获得。 国际性:翻译成25种以上的语言,包括中文,法语,德语,意大利语,俄语和西班牙语,还有更多语言可供选择。 直观:专为学生和高级研究人员而设计。 快速:支持多线程渲染和计算。 可扩展:开发人员的插件架构,包括渲染,交互式工具,命令和Python脚本。 灵活:功能包括Ope
2024-08-23 11:45:12 17.38MB visualization windows linux mac
1
### 2023年全国大学生数学建模大赛C题知识点解析 #### 一、问题背景及重述 - **背景介绍**: - 在中国全面进入小康社会后,民众对高品质生活的需求日益增长,这对于传统生鲜超市而言既是机遇也是挑战。 - 蔬菜作为日常生活中的必需品之一,其保鲜周期短,且品质会随着时间的推移而降低。一旦当日未能售出,次日便难以继续售卖。 - 面对这一现状,超市需在不确定具体商品种类和进价的情况下做出合理的补货决策。 - 由于蔬菜种类繁多且来源不一,进货通常在凌晨完成,因此需要根据市场变化快速做出决策。 - **问题重述**: - 对于某超市的六个蔬菜类别(附件1),利用附件2和附件3提供的历史销售数据,构建模型以解决以下四个问题: 1. **销量分析**:分析各蔬菜品类和单品的销售规律及其相互关系。 2. **补货决策与定价**:预测销售量,并基于“成本加成定价”原则确定最优补货量与定价策略。 3. **单品预测与定价**:针对选定的30种单品,预测单日销量并确定最佳定价。 4. **综合策略制定**:结合供应端和消费端的因素,提出合理的补货和定价策略。 #### 二、数据预处理与分析方法 - **数据整合**:将附件中的四个数据集整合为单一数据集。 - **异常值处理**:剔除无效数据,使用3σ准则识别并移除异常值。 - **销量分析**: - **图表分析**:绘制各蔬菜销量分布图。 - **描述性统计**:计算平均值、标准差等统计量。 - **聚类分析**:利用K均值聚类算法对蔬菜进行分类。 - **频数分析**:分析各品类出现频率。 - **相关性分析**:通过皮尔逊相关系数分析蔬菜之间的相关性。 - **预测模型构建**: - **岭回归分析**:预测蔬菜销售总量及各品类销量。 - **ARIMA模型**:预测未来销售量和批发价。 - **定价策略**:基于成本加成定价原则确定各品类的最优定价。 - **遗传算法**:优化定价策略,寻找最大收益下的最优解。 #### 三、具体分析过程 - **销量分析**: - 将蔬菜分为三大类:日常主菜、辅菜、时令蔬菜。 - 发现花叶类、辣椒类和食用菌销量较大。 - 进行JB检验,验证销量是否符合正态分布。 - 皮尔逊相关性分析显示不同品类间的相关性。 - **补货决策与定价**: - 岭回归分析显示蔬菜销售总量与批发价、销售单价呈负相关。 - 计算加成率,确定合理定价范围。 - 使用ARIMA模型预测销售量和批发价。 - 结合预测结果和损耗率,计算最优补货量和定价。 - **单品预测与定价**: - 选取销量较大的30种单品。 - 运用ARIMA模型预测销量。 - 应用遗传算法确定最优定价。 - **综合策略制定**: - 供应链管理:收集产地数据,了解气候规律。 - 消费者行为研究:收集烹饪方式和消费者偏好数据。 - 制定合理的补货和定价策略,满足顾客需求。 #### 四、结论 - 通过对超市蔬菜销售数据的深入分析,本研究提出了有效的补货和定价策略。 - 通过构建预测模型和遗传算法优化,实现了蔬菜销量预测和定价策略的优化。 - 结合供应链管理和消费者行为分析,制定了更加灵活和高效的销售策略。 - 本研究不仅有助于提高超市的盈利能力,还能提升顾客满意度,促进超市长期稳定发展。
2024-08-22 13:23:53 2.53MB
1
本实验以小型固定翼无人机 Aerosonde 为对象,通过动力学分析,建立了固定翼飞机非线性动力学模型,并利用 matlab/simulink 对所建模型进行了仿真。本实验选择的控制方法为 PID 控制,其物理意义明确,适用范围广。利用matlab/simulink 对设计的飞行控制系统进行仿真,可以看出,在 PID 控制下,飞机能有较好的飞行效果。
2024-08-22 10:47:40 1.07MB matlab
1