本项目基于朴素贝叶斯和SVM 分类模型,通过对垃圾邮件和正常邮件的数据训练,进行相关词汇词频的统计分析,实现垃圾邮件的识别功能。本项目包括3个模块:数据模块、模型构建、附加功能。需要Python 3.6 及以上配置,在Windows 环境下载Anaconda 完成Python 所需的配置,也可以下载虚拟机在Linux 环境下运行代码。从github 网站下载与python PIL 库配搭使用的文字引擎pytesseract,将PIL 文件夹里的.py 文件,改为相应pytesseract.exe 路径。注册百度云账号,分别建立图像文字识别和图像识别的小程序。
1
为了提高瓦斯涌出量预测的精度和预测模型的泛化能力,提出了一种基于蚁群算法(ACO)优化支持向量机(SVM)参数的瓦斯涌出量预测方法。在SVM所建立预测模型中各个参数的取值区间内,采用蚁群优化算法计算预测模型各个参数的最佳值,基于最佳参数的SVM建立瓦斯涌出量预测模型。结果表明:采用未优化的SVM建立的预测方法,其个别预测误差相对较大,最大误差为8.11%,平均误差为4.68%,采用ACO对于预测模型的参数进行优化后,预测性能有显著提高,最大误差为4.37%,平均误差为2.89%,表明所建议的方法是有效、可行的。
1
为了准确预测瓦斯涌出量,提出了一种基于模糊聚类和支持向量机(SVM)的瓦斯涌出量预测方法。将瓦斯涌出量相关影响因素作为特征空间中的样本,采用模糊C均值聚类对特征空间中的样本进行聚类分析,对于所得到的不同类别样本分别建立SVM预测模型。结果表明:采用单纯的SVM预测方法,对于不同特征的样本的预测个别预测误差相对较大,其最大误差为8.11%,平均误差为4.68%,采用文中所建议的用FCM对样本分类后再进行SVM预测,预测精度有明显改善,最大误差和6.94%,平均误差为3.35%,表明所建议的方法是有效和可行的。
2024-03-04 09:40:13 212KB 瓦斯涌出量 模糊C均值聚类
1
针对当前瓦斯实时监测工作存在的被动局面,结合当前的无线传输技术,提出一种基于CAN+ZigBee的瓦斯实时监测系统。系统中,以ZigBee+CC2530作为采集节点,完成巷道内空气湿度、风速、瓦斯浓度等的采集,并通过ZigBee路由节点将数据传输给后台监控主机。最后通过多源信息融合技术和GA-SVM完成对瓦斯浓度的预测。以某煤矿巷道作为研究对象,对其瓦斯浓度的实际值与测量值进行对比,得到其两者变化趋势大致吻合,验证了方案的可行性。
1
PSO SVM粒子算法优化的支持向量机,pso粒子群优化算法,matlab源码
2024-02-27 16:12:12 2KB
1
鉴于传统单一预测对非平稳信号处理不佳且滤波不足、预测精度不够等缺点,提出基于SVM-Wavelet组合算法对通风机进行故障预测,运用小波进行信号滤波和特征提取,结合SVM训练样本建立模型,最终在与Matlab无缝连接的Lab VIEW上位机软件中实现模型预测。
2024-02-27 12:08:27 1.01MB 故障预测 SVM-Wavelet LabVIEW
1
SVM-Light详细使用说明,资料,SVM使用必备
2024-02-24 15:53:43 206KB SVM-Light
1
基于SVM的人脸识别程序 用MATLAB编写 简单易懂
2024-01-23 11:12:00 604KB 人脸识别
1
灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题。 仅适应于windows系统
2024-01-23 09:05:21 239KB 支持向量机
1
机器学习--贷款违约行为预测(基于逻辑回归和朴素贝叶斯和随机森林及SVM四种方法实现,资源包含完成则代码及数据,数据3万余条记录
1