遗传算法原理及应用---国防工业出版社 周明,孙树栋
2024-10-14 10:51:38 3.51MB 遗传算法原理及应用
1
Unity杀戮尖塔地图算法实现 项目引擎:Unity 语言:C# 主要实现逻辑 一. 地图房间生成规则 ①房间数量规则 起点层:房间数量动态配置 中间层:房间数量 :{最小值:2 ,最大值起点数量*2-1} boss 层:房间数量=1 ②房间位置 X: 房间在该层平铺后+随机横向偏移 Y:当前层数 * 每层高度+随机纵向偏移 二. 路线生成规则 ①获取当前房间最近的上层房间,将该房间存入当前房间上层对象列表中 ②断路检索:如果下层房间没有任何对象将当前层设置到上层对象列表中,下层距离此层距离最近的对象将此层添加上层对象列表 ③链接当前层和上层对象列表中的对象
2024-10-14 09:57:15 10.3MB unity
1
提出了在多物资、多车型特征的应急物资分层调度情况下求解调度系统中各运输工具具体调度方案的算法。该算法以系统调度任务完成时间最小为目标,基于遗传算法采用整体联动的求解思想。实际应用中的调度问题往往具有层次性,针对物资分层联动调度问题,给出了物资两层调度的算例,并建立了相应的数学模型。算例中第一层调度系统由一级仓库、二级仓库、一级运输工具和一级路网构成;第二层调度系统由灾害点、二级仓库、二级运输工具和二级路网构成。将两层调度系统视做整体,采用基于遗传算法的整体联动求解方法对算例进行求解得出结果,并对结果进行分析论证,验证算法的可行性与有效性。
2024-10-13 23:49:56 1.63MB
1
在IT领域,动态规划是一种强大的算法工具,常用于解决复杂的问题,如最优化问题。本主题聚焦于"01背包问题",这是一个经典的计算机科学优化问题,与动态规划紧密相关。01背包问题通常出现在资源有限的情况下,我们需要选择最优的物品组合以最大化价值或满足特定目标。 动态规划是一种解决问题的方法,它将复杂问题分解为较小的子问题,并存储子问题的解决方案以避免重复计算。在01背包问题中,我们有一个容量为W的背包和n个物品,每个物品有重量wi和价值vi。目标是选取不超过背包容量的物品,使得总价值最大。 我们定义一个二维数组dp[i][j],其中i表示考虑前i个物品,j表示背包剩余容量。dp[i][j]表示在考虑前i个物品且背包容量为j时能够获得的最大价值。 动态规划的转移方程是关键所在。对于第i个物品,有两种情况: 1. 如果不选第i个物品(即跳过),那么dp[i][j]等于dp[i-1][j],因为我们没有使用第i个物品的任何部分。 2. 如果选择第i个物品,我们必须检查是否背包容量足够装下它。如果j>=wi,我们可以尝试放入这个物品。在这种情况下,dp[i][j]等于dp[i-1][j-wi]加上第i个物品的价值vi,因为我们使用了第i个物品并且背包容量减少了wi。 最终,dp[n][W]就是我们寻找的最优解,即在背包容量W限制下,能获得的最大价值。 在实际应用中,01背包问题可以扩展到多个限制条件,例如物品可能有类别限制、数量限制等。解决这些问题通常需要对基础动态规划方案进行适当的修改和扩展。 在"01 背包问题限定条件最优解动态规划算法.docx"文档中,可能会详细介绍如何处理这些额外的条件,包括如何构造状态和调整转移方程,以及如何通过剪枝技术减少计算量,提高算法效率。这可能是通过引入额外的维度来记录这些条件,或者通过设计更复杂的决策过程来处理约束。 01背包问题及其动态规划解法是理解和掌握动态规划算法的重要案例,它们在实际问题中有着广泛的应用,如资源分配、任务调度、投资组合优化等。深入理解并熟练应用动态规划,对于提升编程能力和解决实际问题能力至关重要。
2024-10-13 13:29:03 10KB 动态规划
1
采用栅格法建模,从文件中读取bmp格式图片先将其灰度化,然后将其转化成一个n*n的环境区域,即将图片划分成n*n个像素块。在全局路径规划中,机器人从起点开始到节点再从节点到目标点的代价值用遍历的栅格总和来表示,也就是机器人每覆盖一个栅格,成本代价就是从起点到节点的覆盖栅格数的累加,估计代价就是从当前节点到目标点的栅格数累加。机器人在覆盖栅格的时候首先要判断目标栅格是否是自由栅格,然后判断这个自由栅格是否是关联性最大的栅格,与相关栅格比较如果关联值最大即作为覆盖栅格。如果关联属性值大小一样,在机器人的八连通方向上按照顺时针栅格。
2024-10-13 09:22:17 16.22MB Matalb A*算法 路径规划
1
蚁群算法(Ant Colony Optimization, ACO)是一种模拟生物行为的优化算法,源自自然界中蚂蚁寻找最短路径的行为。在MATLAB中实现蚁群算法,主要用于解决如旅行商问题(Traveling Salesman Problem, TSP)等组合优化问题。下面我们将深入探讨蚁群算法的基本原理、MATLAB实现的关键步骤以及可能遇到的问题。 1. **蚁群算法基本原理** - 蚂蚁系统:由多只蚂蚁在图中搜索路径,每只蚂蚁根据信息素浓度和距离选择下一个节点。 - 信息素更新:蚂蚁走过路径后留下信息素,信息素会随着时间蒸发,同时好的路径(短路径)积累的信息素更多。 - 概率转移规则:蚂蚁在节点间转移的概率与当前节点到目标节点的信息素浓度和距离的启发式因子有关。 - 全局更新:周期性地全局更新所有路径的信息素浓度,以防止局部最优。 2. **MATLAB实现关键步骤** - **初始化**:定义蚂蚁数量、城市(节点)数量、迭代次数、信息素蒸发率、启发式因子等参数。 - **构建图**:建立城市间的邻接矩阵,表示各城市之间的距离。 - **路径选择**:每只蚂蚁依据当前信息素浓度和启发式因子选择下一个节点,形成路径。 - **信息素更新**:根据蚂蚁走过的路径和信息素更新策略更新所有边的信息素浓度。 - **全局更新**:执行一定次数的迭代,每次迭代后全局更新信息素。 - **结果分析**:记录每轮迭代的最优解,最后得到全局最优路径。 3. **MATLAB代码结构** - 主函数:调用子函数,设置参数,进行循环迭代。 - 子函数包括:初始化函数、路径选择函数、信息素更新函数、距离计算函数等。 - 数据结构:可能使用矩阵、结构体或细胞数组来存储城市信息、路径和信息素浓度。 4. **可能遇到的问题及解决策略** - 局部最优:蚁群算法易陷入局部最优,可通过调整参数、引入扰动机制或使用多种信息素更新策略来改善。 - 计算效率:大规模问题可能导致计算量大,可采用并行计算优化。 - 参数选取:信息素蒸发率、启发式因子等参数的选择对算法性能有很大影响,需通过实验调整。 5. **antPlan-master文件夹内容** - 可能包含MATLAB源代码文件,如`.m`文件,用于实现蚁群算法的各种函数和主程序。 - 数据文件,可能包含城市位置、距离矩阵等初始输入数据。 - 结果文件,可能保存了每次迭代的最优路径和最终结果。 - README文件,介绍项目背景、使用方法和注意事项。 了解以上内容后,你可以通过解析`antPlan-master`中的文件,逐步理解并运行MATLAB实现的蚁群算法,进行路径规划。在实际应用中,还可以根据具体需求调整算法,例如优化算法效率、适应不同的优化问题等。
2024-10-13 08:10:07 942KB matlab
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-12 22:14:55 2.45MB matlab
1
路径规划算法是计算机科学和人工智能领域中的一个重要课题,它的目标是在复杂的环境中找到从起点到终点的最优或次优路径。蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁寻找食物路径行为的优化算法,它在路径规划问题中表现出色,尤其是在解决多目标和大规模图的路径搜索上。 蚁群算法源于对蚂蚁社会行为的观察,当蚂蚁在寻找食物源和返回巢穴之间移动时,会在路径上留下一种称为信息素的化学物质。其他蚂蚁会根据信息素浓度选择路径,导致高效率路径的信息素积累得更多,形成正反馈机制,最终使得整个蚁群趋向于选择最优路径。在路径规划问题中,我们可以将地图上的节点视为蚁群中的位置,将边权重表示为路径成本,通过模拟蚂蚁的行为来寻找最佳路径。 在基于蚁群算法的路径规划中,主要包含以下几个关键步骤: 1. 初始化:设定每只蚂蚁的起始位置,以及信息素的初始浓度和蒸发速率。 2. 蚂蚁搜索:每只蚂蚁随机地在图中选择下一个节点,选择的概率与当前节点到相邻节点的信息素浓度和距离有关。 3. 更新信息素:所有蚂蚁完成路径后,根据路径的质量(通常为路径长度)更新信息素浓度。优秀路径上的信息素会增加,而较差路径上的信息素会减少。 4. 信息素蒸发:所有路径上的信息素按照一定的速率蒸发,以防止算法陷入局部最优解。 5. 循环迭代:重复步骤2到4,直到达到预设的迭代次数或满足停止条件。 蚁群算法的优势在于其并行性和全局优化能力,但也有缺点,如易陷入早熟(过早收敛到局部最优解)和计算量大等问题。因此,实际应用中通常需要结合其他策略进行改进,如引入启发式信息、动态调整信息素挥发和沉积因子等。 在实现过程中,需要注意以下几点: - 数据结构:构建合适的图数据结构,如邻接矩阵或邻接表,用于存储节点之间的连接和权重。 - 蚂蚁个体:设计蚂蚁的移动策略,如采用概率选择下一个节点的方式。 - 信息素更新:制定合理的信息素更新规则,平衡探索和开发之间的关系。 - 止停条件:设置适当的迭代次数或满足特定条件后结束算法。 文件"路径规划算法_基于蚁群算法实现的路径规划算法"可能包含了蚁群算法的具体实现细节、代码示例、结果分析等内容,这对于理解和掌握该算法的实际应用非常有帮助。通过深入学习这个资料,可以进一步理解如何将蚁群算法应用于实际的路径规划问题,并掌握其优化技巧和应用场景。
2024-10-12 21:42:00 6KB 路径规划 蚁群算法
1
路径规划是计算机科学和自动化领域中的一个重要课题,其目标是在复杂环境中找到从起点到终点的最优或近似最优路径。遗传算法(Genetic Algorithm, GA)是一种启发式搜索方法,来源于生物学中的自然选择和遗传机制,常用于解决优化问题,包括路径规划。本资料主要探讨了如何利用遗传算法来实现路径规划。 遗传算法的基本步骤包括初始化种群、选择、交叉和变异。在路径规划问题中,种群可以理解为一系列可能的路径,每个路径代表一个个体。初始化时,随机生成一组路径作为初始种群。选择操作是根据某种适应度函数(如路径长度)来挑选优秀的路径进行下一代的繁殖。交叉操作模拟生物的基因重组,通过交换两个路径的部分片段来产生新的路径。变异操作则是在路径中随机选取一个节点,将其移动到其他位置,以保持种群的多样性,防止过早收敛。 在路径规划的具体实现中,首先需要对环境进行建模,通常使用图或网格表示。每一步移动对应图中的一个边或网格的一个单元格。然后,定义适应度函数,比如路径的总距离、经过障碍物的数量或时间消耗等。遗传算法的目的是找到适应度最高的路径。 在遗传算法求解路径规划问题时,需要注意几个关键点: 1. 表示路径:路径可以被编码为二进制字符串,每个二进制位代表一个决策,比如是否通过某个节点。 2. 初始化种群:随机生成路径,确保覆盖起点和终点。 3. 适应度函数:设计合适的评价标准,如总步数、避开障碍物的次数或路径的曲折程度。 4. 选择策略:常用的有轮盘赌选择、锦标赛选择等,目的是让优秀路径有更高的繁殖概率。 5. 交叉操作:如单点交叉、多点交叉,确保新路径保留父母的优点。 6. 变异操作:例如随机切换路径上的节点,增加解的多样性。 在实际应用中,遗传算法往往与其他技术结合,如A*算法或Dijkstra算法,用于引导初始种群的生成或局部优化。此外,还可能引入精英保留策略,确保每次迭代至少保留一部分优秀路径,防止优良解丢失。 总结起来,"路径规划算法-基于遗传算法实现的路径规划算法.zip" 文件中提供的内容是关于如何运用遗传算法解决路径规划问题的详细介绍。通过理解和应用这些知识,开发者能够设计出能够在复杂环境中寻找高效路径的智能系统,应用于自动驾驶、机器人导航、物流配送等多个领域。
2024-10-12 21:25:53 181KB 路径规划 遗传算法
1
【弗洛伊德算法】是图论中的一个经典算法,主要用于求解图中所有顶点对之间的最短路径。在数学建模中,这个算法常常被用来解决实际问题,例如交通网络规划、通信网络优化等,它能有效地找出两点间的最短路径,尤其在面对含有负权边的图时,其优势更为明显。本篇将详细介绍弗洛伊德算法的原理、实现过程以及在Matlab中的应用。 弗洛伊德算法的基本思想是动态规划,它通过逐步扩大搜索范围,逐步更新每对顶点之间的最短路径。算法的核心在于每次尝试通过中间节点来缩短两个顶点之间的距离,迭代直至所有可能的中间节点都被考虑过。具体步骤如下: 1. 初始化:根据给定的图(通常表示为邻接矩阵或邻接表),初始化每个顶点对的最短路径。对于无向图,对角线元素为0,表示顶点到自身的路径长度为0;非对角线元素为图中边的权重,表示两个顶点之间的直接路径长度。 2. 动态规划:对于每一对顶点i和j,遍历所有中间节点k,检查是否存在更短的路径,即d[i][j] > d[i][k] + d[k][j],如果存在,则更新d[i][j] = d[i][k] + d[k][j]。这里的d[i][j]表示顶点i到顶点j的最短路径长度。 3. 循环:重复步骤2,直到遍历完所有顶点,此时得到的d矩阵中的每个元素都表示对应顶点对的最短路径长度。 在Matlab中实现弗洛伊德算法,可以利用其强大的数组运算能力。创建邻接矩阵表示图,然后通过嵌套循环进行动态规划更新。以下是一个简化的Matlab代码示例: ```matlab function shortestPaths = floydWarshall(graph) n = size(graph, 1); % 获取图的顶点数量 shortestPaths = graph; % 初始化最短路径矩阵 for k = 1:n for i = 1:n for j = 1:n if shortestPaths(i, j) > shortestPaths(i, k) + shortestPaths(k, j) shortestPaths(i, j) = shortestPaths(i, k) + shortestPaths(k, j); end end end end end ``` 在实际的数学建模问题中,我们可能需要将这个算法与其他工具结合,如读取和处理数据、可视化结果等。例如,可以使用Matlab的`load`函数读取图的数据,`plot`函数绘制最短路径图,或者`disp`函数显示最短路径长度。 总结,弗洛伊德算法是解决图论中最短路径问题的有效方法,尤其适用于存在负权边的情况。在Matlab中,我们可以轻松实现并应用于各种数学建模场景,以解决实际问题。通过学习和掌握弗洛伊德算法,我们可以更好地理解和解决涉及网络优化的问题。在"清风数学建模"的19集中,你将深入了解到这一算法的详细解释和实例应用,这对于提升数学建模能力是非常有帮助的。
2024-10-12 21:24:49 174.35MB Matlab
1