MADRL面向角色的多智能体强化学习(ROMA)算法代码

上传者: 51399582 | 上传时间: 2025-05-14 20:36:07 | 文件大小: 113KB | 文件类型: ZIP
【MADRL】面向角色的多智能体强化学习(ROMA)算法代码 =================================================================== 包含ROMA算法实现的项目代码 =================================================================== 在多智能体系统中,如何让各个智能体有效协作、合理分工,最大化整体性能是一个核心问题。面向角色的多智能体强化学习(Role-Oriented Multi-Agent Reinforcement Learning, ROMA) 算法正是为了解决这一问题而设计的。         在 ROMA 中,“角色”(Role) 是多智能体协作中的核心概念。智能体被分配不同的角色,每个角色决定智能体在任务中的具体职责和行为模式。通过这种角色导向的方式,ROMA 试图提高多智能体系统中的协作效率,同时使得策略学习更加稳定和高效。

文件下载

资源详情

[{"title":"( 61 个子文件 113KB ) MADRL面向角色的多智能体强化学习(ROMA)算法代码","children":[{"title":"ROMA","children":[{"title":"src","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"controllers","children":[{"title":"__init__.py <span style='color:#111;'> 169B </span>","children":null,"spread":false},{"title":"separate_controller.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"basic_controller.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"modules","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"critics","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"coma.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"agents","children":[{"title":"__init__.py <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"latent_ce_dis_rnn_agent.py <span style='color:#111;'> 9.84KB </span>","children":null,"spread":false},{"title":"rnn_agent.py <span style='color:#111;'> 875B </span>","children":null,"spread":false}],"spread":true},{"title":"mixers","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"qmix.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"vdn.py <span style='color:#111;'> 228B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"utils","children":[{"title":"logging.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"dict2namedtuple.py <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"timehelper.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"rl_utils.py <span style='color:#111;'> 774B </span>","children":null,"spread":false}],"spread":true},{"title":"learners","children":[{"title":"__init__.py <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"q_learner.py <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"coma_learner.py <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"latent_q_learner.py <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"components","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"epsilon_schedules.py <span style='color:#111;'> 770B </span>","children":null,"spread":false},{"title":"episode_buffer.py <span style='color:#111;'> 10.64KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 568B </span>","children":null,"spread":false},{"title":"action_selectors.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false},{"title":"envs","children":[{"title":"__init__.py <span style='color:#111;'> 563B </span>","children":null,"spread":false},{"title":"multiagentenv.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"starcraft2","children":[{"title":"__init__.py <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"starcraft2.py <span style='color:#111;'> 54.81KB </span>","children":null,"spread":false},{"title":"maps","children":[{"title":"__init__.py <span style='color:#111;'> 313B </span>","children":null,"spread":false},{"title":"smac_maps.py <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"designed","children":[{"title":"zb_vs_sz.SC2Map <span style='color:#111;'> 17.56KB </span>","children":null,"spread":false},{"title":"sz_vs_zb.SC2Map <span style='color:#111;'> 15.35KB </span>","children":null,"spread":false},{"title":"bane_vs_bane1.SC2Map <span style='color:#111;'> 15.16KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"gfootball","children":[{"title":"__init__.py <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"gfootball.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"runners","children":[{"title":"__init__.py <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"episode_runner.py <span style='color:#111;'> 4.33KB </span>","children":null,"spread":false},{"title":"parallel_runner.py <span style='color:#111;'> 10.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"envs","children":[{"title":"sc2.yaml <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"gf.yaml <span style='color:#111;'> 868B </span>","children":null,"spread":false}],"spread":false},{"title":"algs","children":[{"title":"coma_smac.yaml <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"iql_smac.yaml <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"vdn_smac.yaml <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"qmix_smac.yaml <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"qmix.yaml <span style='color:#111;'> 532B </span>","children":null,"spread":false},{"title":"qmix_smac_latent_gf.yaml <span style='color:#111;'> 857B </span>","children":null,"spread":false},{"title":"qmix_smac_latent.yaml <span style='color:#111;'> 822B </span>","children":null,"spread":false}],"spread":false},{"title":"default.yaml <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"Dockerfile <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"build.sh <span style='color:#111;'> 96B </span>","children":null,"spread":false}],"spread":true},{"title":"run_interactive.sh <span style='color:#111;'> 482B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 810B </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 479B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"install_sc2.sh <span style='color:#111;'> 885B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明