(源码)基于PyTorch的多智能体强化学习算法MADDPG复现.zip

上传者: m0_74337424 | 上传时间: 2025-05-14 20:33:25 | 文件大小: 592KB | 文件类型: ZIP
# 基于PyTorch的多智能体强化学习算法MADDPG复现 ## 项目简介 本项目旨在复现多智能体强化学习领域中的经典算法MADDPG(MultiAgent Deep Deterministic Policy Gradient)。MADDPG是一种适用于混合合作与竞争环境的算法,通过集中式训练和分布式执行的方式,使每个智能体能够基于自身和其他智能体的动作状态进行学习。项目使用Python和PyTorch框架实现,并采用了PettingZoo的MPE(MultiAgent Particle Environment)环境进行实验。 ## 项目的主要特性和功能 1. 多智能体环境支持支持PettingZoo的MPE环境,允许在多种多智能体场景下进行训练和测试。 2. MADDPG算法实现实现了MADDPG算法的核心逻辑,包括智能体的创建、动作选择、网络训练等。 3. 模型保存与加载提供模型保存和加载功能,便于实验的连续性和结果的复现。

文件下载

资源详情

[{"title":"( 20 个子文件 592KB ) (源码)基于PyTorch的多智能体强化学习算法MADDPG复现.zip","children":[{"title":"main.py <span style='color:#111;'> 15.00KB </span>","children":null,"spread":false},{"title":"更多源码尽在【www.makuang.net】.txt <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"resource","children":[{"title":"simple_push_test.gif <span style='color:#111;'> 562.13KB </span>","children":null,"spread":false},{"title":"simple_push_mean_score.jpg <span style='color:#111;'> 20.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"maddpg","children":[{"title":"__init__.py <span style='color:#111;'> 359B </span>","children":null,"spread":false},{"title":"agent.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"replay_buffer.py <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"maddpg_algo.py <span style='color:#111;'> 5.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"outputs","children":[{"title":"models","children":[{"title":"simple_push","children":[{"title":"agent_0target_actor.pth <span style='color:#111;'> 24.58KB </span>","children":null,"spread":false},{"title":"agent_0_actor.pth <span style='color:#111;'> 24.58KB </span>","children":null,"spread":false},{"title":"adversary_0target_actor.pth <span style='color:#111;'> 21.83KB </span>","children":null,"spread":false},{"title":"adversary_0critic.pth <span style='color:#111;'> 28.02KB </span>","children":null,"spread":false},{"title":"adversary_0target_critic.pth <span style='color:#111;'> 28.02KB </span>","children":null,"spread":false},{"title":"adversary_0_actor.pth <span style='color:#111;'> 21.83KB </span>","children":null,"spread":false},{"title":"agent_0target_critic.pth <span style='color:#111;'> 28.02KB </span>","children":null,"spread":false},{"title":"agent_0critic.pth <span style='color:#111;'> 28.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"results","children":[{"title":"simple_push","children":[{"title":"result.jpg <span style='color:#111;'> 32.86KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明