LOKI:智能体轨迹和意图预测的大规模数据集及模型评估 LOKI 数据集是为了解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题而提出的。该数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 智能体轨迹预测是自动驾驶环境中的一项关键任务。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据集是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。为此,我们提出了 LOKI 数据集,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。 轨迹预测的最新进展表明,对智能体意图的明确推理是重要的来准确预测它们的运动。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据集是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。 为此,我们提出了 LOKI 数据集,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。LOKI 数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们的模型是基于轨迹预测和意图预测的联合模型,我们的方法优于国家的最先进的轨迹预测方法高达 27%,也提供了一个基线帧明智的意图估计。我们的方法可以更好地理解智能体的长期目标和短期意图,从而提高轨迹预测的精度。 在过去的几年中,已经有广泛的研究来预测场景中的动态代理的未来轨迹,例如行人和车辆。这对于诸如自主车辆或社交机器人导航之类的安全关键应用来说是一项非常重要且具有挑战性的任务。虽然这些方法在最近几年有了显著的进步,但很少有基准测试专门测试这些模型是否能够准确地推理出关键。 人类行为作为目标导向实体的研究在心理学、神经科学和计算机视觉的子领域中具有悠久而丰富的跨学科历史。人类决策过程本质上是分层的,由几个层次的推理和规划机制组成,这些机制协同工作,以实现各自的短期和长期愿望。最近的研究表明,明确地推理长期目标和短期意图可以帮助实现目标。 在这项工作中,我们建议将异构(车辆,行人等)的任务。多智能体轨迹预测和意图预测。我们认为,明确地推理智能体的长期目标和短期意图是在我们的工作中,我们将目标定义为智能体在给定预测范围内想要达到的最终位置,而意图是指智能体如何实现其目标。 例如,考虑十字路口处的车辆。在最高层次上,说他们想达到他们的最终目标,向左转到他们的最终目标点,这反过来可能是一些更高层次的结束(如回家)所必需的。然而,其轨迹的精确运动受许多因素的影响,包括 i)代理人自己的意愿,ii)社会交互,iii)环境约束,iv)上下文线索。 因此,当推理智能体我们相信,这种复杂的短期意图和长期目标的层次结构是无处不在的,事实上,至关重要的,代理运动规划,因此扩展,运动预测。我们提出了一种架构,其考虑类似于 [9,5,3,4] 的长期目标,但添加了用于调节轨迹预测模块的逐帧意图估计的关键组件。通过强制模型学习代理的离散短期意图,我们观察到预测模块的性能提高。 同样丰富成功的是使用数据集对计算机视觉进行基准测试的当代历史在 MNIST [11] 和 ImageNet [12] 等基准测试等开创性工作的指导下,基准测试进展和从数据中学习在现代深度学习的成功中发挥了关键作用。目前,不存在允许在高度复杂的环境中对异构代理进行明确的逐帧意图预测的公共数据集。尽管很少有数据集被设计用于从自我中心的角度研究行人的意图或行为 [13,7,6,14],但这是对自动驾驶任务的广泛研究的固有限制。 因此,我们提出了一个联合轨迹和意图预测数据集,该数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们表明,通过建模的短期意图和长期目标与明确的监督,通过意图标签,可以实现更好的轨迹预测精度。此外,在每一帧预测一个特定的意图为我们的模型增强了模型的泛化能力和鲁棒性。
2025-09-11 19:38:17 1.86MB 轨迹预测
1
一种基于显式模型预测控制的四足机器人控制方法及控制终端
2025-09-11 16:25:56 1.06MB
1
内容概要:本文介绍了基于Kerala数据集的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据集可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1
在当前的智能交通系统研究中,准确预测交通流量一直是核心问题之一。随着深度学习技术的发展,其在时间序列预测领域的应用越来越广泛,特别是对于像纽约这样的大都市,出租车作为城市公共交通的重要组成部分,其流量的实时准确预测对于城市交通管理和规划具有重要意义。 本次研究以纽约市出租车的运行数据为研究对象,利用深度学习模型进行流量预测。通过对出租车GPS轨迹数据的分析,提取出行时间和空间特征,结合天气、节假日、事件等外部因素,建立起了综合的流量预测模型。研究的目标是通过分析历史数据,找出影响出租车流量的关键因素,并建立能够准确预测未来出租车流量变化的模型。 在模型选择方面,研究采用了多种深度学习架构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)等,以比较它们在交通流量预测中的表现。CNN擅长从空间特征中提取信息,而RNN及其变种LSTM和GRU则更擅长处理时间序列数据。此外,研究还可能涉及对这些基础模型的改进与优化,例如引入注意力机制、集成学习方法等,以提高预测的精度和稳定性。 在数据预处理方面,原始数据需要经过清洗和标准化处理。清洗主要是去除错误和异常数据,而标准化则包括将数据缩放到统一的范围或者分布,以减少不同特征量级差异对模型训练的影响。此外,为了更好地捕捉时间序列的动态特征,可能还需要对时间序列数据进行重采样,比如将小时级别的数据转换为分钟级别。 研究中还会考虑模型的泛化能力,通过交叉验证、时间序列分割等方法,评估模型在未知数据上的表现。预测模型的性能评价指标可能包括均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等。 本研究旨在利用深度学习技术,通过分析大量出租车运行数据,建立高精度的出租车流量预测模型,以期为城市交通管理和规划提供科学依据,减少交通拥堵,提升城市运行效率。
2025-09-10 14:44:09 312B
1
瓦斯浓度预测是矿业安全领域中的一个重要研究方向,目的是通过对瓦斯浓度的实时监测和预测,提前发现瓦斯超限的危险情况,从而采取措施避免瓦斯爆炸等灾害的发生。随着技术的发展,越来越多的数据分析方法被应用于瓦斯浓度的预测,包括时间序列分析、机器学习和深度学习等。在机器学习和深度学习领域,构建有效的数据集是进行预测分析的基础。 本数据集名为“三种瓦斯浓度预测数据集”,其包含了多组实验数据,这些数据能够模拟在不同的环境和条件下,瓦斯浓度的变化情况。数据集内的每一条数据记录都代表了在特定时刻,特定条件下的瓦斯浓度读数。通过对这些数据的分析,研究人员可以探索瓦斯浓度的变化规律,以及影响瓦斯浓度的各种因素。 数据集中的文件分别命名为try1.csv、try11.csv、try111.csv和try2.csv。这四份CSV格式文件分别代表不同的实验或数据采集批次。CSV文件是目前普遍使用的一种数据格式,其优点是易于存储、易于读写和兼容性强。在数据集中,每一条记录都可能包含了时间戳、瓦斯浓度值以及其他可能影响瓦斯浓度的因素,如温度、湿度、通风状况等。 通过对这四个数据集进行综合分析,研究人员可以建立瓦斯浓度预测模型。这些模型可以根据历史数据预测未来的瓦斯浓度,从而为矿井安全管理提供科学依据。例如,在使用机器学习方法时,研究人员可以从数据集中提取特征,然后选择合适的算法进行训练。常用的算法包括线性回归、支持向量机、随机森林和神经网络等。模型训练完成后,需要通过验证集和测试集对模型进行评估,以确保模型的泛化能力和预测准确性。 此外,瓦斯浓度预测的数据集还可以用于教育和培训目的。在矿业工程和安全科学的教学中,教师可以利用这些数据集向学生讲授数据分析和模型建立的过程,提高学生处理实际问题的能力。 “三种瓦斯浓度预测数据集”是一个宝贵的研究资源,它为瓦斯浓度预测提供了丰富的实验数据。通过深入挖掘这些数据,不仅可以提高矿井安全管理水平,还能够推动相关领域的科学研究和技术进步。
2025-09-10 09:57:56 166KB 数据集
1
该数据集是关于德国风力发电机发电预测的研究资源,涵盖了从2019年到2021年12月的时段,总计约13万条记录,每10分钟采集一次数据,提供了丰富的信息用于分析和建模。以下是这个数据集包含的主要知识点: 1. **时间序列分析**:由于数据每10分钟更新一次,这为进行时间序列分析提供了理想条件。可以使用ARIMA、状态空间模型或季节性分解趋势成分(STL)等方法来研究发电量随时间的变化规律。 2. **风电功率预测**:风力发电机的发电量受多种因素影响,如风速、风向、空气密度、叶片角度等。通过这些数据,可以构建预测模型来估计未来的发电功率,这对于能源调度和电网稳定至关重要。 3. **特征工程**:76维特征包括了轴承温度等关键参数,这些参数可能与发电机的运行状态和效率紧密相关。通过对这些特征进行工程处理(例如归一化、标准化、衍生特征、相关性分析等),可以增强模型的预测能力。 4. **异常检测**:轴承温度是衡量风电机组健康状况的重要指标,过高或过低的温度都可能预示着潜在故障。通过数据分析,可以识别出异常温度模式,从而及时进行维护和预防性维修。 5. **机器学习模型**:可以应用各种监督学习模型(如线性回归、随机森林、支持向量机、神经网络等)和无监督学习模型(如聚类、主成分分析等)对风力发电进行建模,理解特征之间的相互作用,并预测未来发电性能。 6. **多变量相关性**:探究76个特征间的相关性,可以帮助我们理解哪些因素对发电量的影响最大,以及它们之间是否存在协同效应。可以使用相关矩阵、热图或者网络图来可视化这些关系。 7. **时间间隔分析**:10分钟的时间间隔意味着数据具有较高的时间分辨率,这有利于捕捉到短时间内风力发电机状态的快速变化,对于短期预测模型的构建尤其有利。 8. **数据清洗**:在实际使用前,需要对数据进行清洗,处理缺失值、异常值和重复值,确保模型训练的基础数据质量。 9. **单位信息**:数据集中的每个特征都有相应的单位,了解这些单位对于正确解释和处理数据至关重要,比如温度可能是摄氏度,风速可能是米/秒等。 10. **数据可视化**:利用可视化工具(如Matplotlib、Seaborn或Plotly)将数据以图形形式展示出来,可以帮助直观理解数据分布、趋势和异常情况。 这个数据集为深入研究风力发电的性能、预测和设备健康管理提供了宝贵资源,适合从事能源、机器学习、数据科学或相关领域的专业人士进行分析和建模。
2025-09-08 22:25:03 45.33MB 数据集
1
关于本工具 本工具基于泊松分布模型对足球比赛结果进行预测。泊松分布是一种概率分布模型,非常适合预测足球比赛中离散的进球数量。 如何使用 输入比赛的主队和客队名称 输入胜平负和让球胜平负的赔率数据 输入两队近十场比赛的进球统计数据 点击"计算预测结果"按钮获取预测结果
2025-09-08 16:47:20 7KB AI
1
全面解析永磁同步电机模型预测控制Simulink仿真模型:七种PMSM预测控制策略与全原理解析的实践研究报告,"深入探索永磁同步电机模型预测控制:全面Simulink仿真模型及原理解析(包含七种PMSM预测控制仿真模型与拓展状态观测器ESO无差无模型预测控制及全解析文档)",最全面的永磁同步电机模型预测控制simulink仿真模型(带全原理解析) 共包含七个PMSM预测控制仿真模型,有助于对比学习: FCS-MPC: 单矢量MPCC, 双矢量MPCC, 单矢量MPTC; CCS-MPC: 级联式,非级联式; 带拓展状态观测器(ESO)的无差预测控制 带拓展状态观测器(ESO)的无模型预测控制 还包含4000多字的文档,包含原理解析,公式和控制框图。 联系后请加好友邮箱,模型默认为2023a版本,若有更低版本的需求也。 ,核心关键词:永磁同步电机; 模型预测控制; Simulink仿真模型; PMSM预测控制仿真模型; FCS-MPC; CCS-MPC; 拓展状态观测器(ESO); 无差预测控制; 无模型预测控制; 文档原理解析。,"2023a版全面永磁同步电机模型预测控制Simuli
2025-09-08 14:49:16 774KB css3
1
"永磁同步电机模型预测控制全面解析与Simulink仿真建模",最全面的永磁同步电机模型预测控制simulink仿真模型(带全原理解析) 共包含七个PMSM预测控制仿真模型,有助于对比学习: FCS-MPC: 单矢量MPCC, 双矢量MPCC, 单矢量MPTC; CCS-MPC: 级联式,非级联式; 带拓展状态观测器(ESO)的无差预测控制 带拓展状态观测器(ESO)的无模型预测控制 还包含4000多字的文档,包含原理解析,公式和控制框图。 联系后请加好友邮箱,模型默认为2023a版本,若有更低版本的需求也。 ,核心关键词:永磁同步电机; 模型预测控制; Simulink仿真模型; PMSM预测控制仿真模型; FCS-MPC; CCS-MPC; 拓展状态观测器(ESO); 无差预测控制; 无模型预测控制; 文档原理解析。,"2023a版全面永磁同步电机模型预测控制Simulink仿真模型及全原理解析"
2025-09-08 14:48:41 772KB
1
紧凑型氨裂解装置是一种将氨分解成氢气和氮气的设备,其产品主要应用于燃料电池或其他氢动力系统。中国作为研究对象,该行业市场规模不断扩大,市场空间广阔。根据预测,从2019至2030年,市场规模将呈现稳步增长的趋势,为行业参与者提供机遇。 报告详细研究了中国紧凑型氨裂解装置的生产、消费及进出口情况,特别关注了全球及本土重要生产商在中国市场的表现,包括销量、收入、价格和市场份额等关键指标。生产商分析部分列出了如Reaction Engines、KAPSOM、H2SITE、AFC Energy、Johnson Matthey、KIER、MVS Hydrogen、AMOGY和Toyo Engineering等企业,提供了对行业领先者基本情况的介绍。 报告深入分析了产品本身的不同细分增长情况,如不同产品类型和应用的紧凑型氨裂解装置在市场中的表现。产品类型主要分为≤50 Nm³/h、50-100 Nm³/h以及其他类别。应用方面则涵盖了船舶、汽车、制氢厂及其他领域。这些信息对于行业内外的决策者来说,具有重要的参考价值。 行业发展环境分析、供应链分析、中国本土生产情况分析和进出口情况也是报告的重要内容,为理解中国紧凑型氨裂解装置行业的全局提供了宏观的视角。报告通过这些分析,对行业的未来增长情况和产业链的演化格局进行了预测和预判。 报告结论部分总结了中国紧凑型氨裂解装置行业的现状和未来趋势,特别指出了中国市场紧凑型氨裂解装置的收入和销量自2019年以来的增长情况,并对行业未来的发展进行了展望。报告的数据和分析为企业在策略规划、市场进入、产品开发等方面提供了数据支持和指导。 总结而言,中国市场紧凑型氨裂解装置行业的研究显示,该行业具有广阔的发展前景和市场空间。全球及本土领先生产商在中国市场的竞争激烈,产品类型和应用领域的多样化需求为行业提供了发展的动力。随着技术进步和市场环境的变化,行业参与者需密切关注行业发展趋势,以适应市场的发展需求。
2025-09-06 21:09:46 279KB
1